
4/17/18

1

CS2110
Spring 2018HASHING

Announcements

¨ Submit Prelim 2 conflicts by tomorrow night
¨ A7 Due FRIDAY
¨ A8 will be released on Thursday

2

Hash Functions

¨ Requirements:
1) deterministic
2) return a number in [0..n]

01

3
4 1

¨ Properties of a good
hash:
1) fast
2) collision-resistant
3) evenly distributed
4) hard to invert

Hash Functions

¨ Requirements:
1) deterministic
2) return a number in [0..n]

01

3
4 1

Which of the following functions f: Object -> int are
hash functions:

a) f(x) = x
b) f(x) = x.hashCode()
c) f(x) = &x
d) f(x) = 0

Example: SHA-256 Example: hashCode()

¨ Method defined in java.lang.Object
¨ Default implementation: uses memory address of

object
¤ If you override equals, you must override hashCode!!!

¨ String overrides hashCode:
s. hashCode() ∶= 	𝑠[0] ∗ 31567 	+ 	𝑠[1] ∗ 31569 	+	…	+ 	𝑠[𝑛 − 1]

6

4/17/18

2

Application: Error Detection

¨ Hash functions are used for error detection
¨ E.g., hash of uploaded file should be the same as

hash of original file (if different, file was corrupted)

7

Application: Integrity

¨ Hash functions are used
to "sign" messages

¨ Provides integrity
guarantees in presence
of an active adversary

¨ Principals share some
secret sk

¨ Send (m, h(m,sk))

¨ Hash functions are used to
store passwords

¨ Could store plaintext
passwords
¤ Problem: Password files get

stolen

¨ Could store
(username, h(password))
¤ Problem: password reuse

¨ Instead, store
(username, s, h(password, s))

Application: Password Storage Application: Hash Set
10

Data Structure add(val x) lookup(int i) find(val x)

ArrayList

LinkedList

TreeSet

HashSet

2 1 3 0

2 1 3 0

𝑂(𝑛) 𝑂(1)

𝑂(𝑛)𝑂(1)

𝑂(𝑛)

𝑂(𝑛)

2
1 3 𝑂(log 𝑛) 𝑂(log 𝑛)

𝑂(1) 𝑂(1)3 1 2
0 1 2 3

Expected time
Worst-case: 𝑂(𝑛)

Idea: finding an element in an array takes constant time
when you know which index it is stored in

Hash Tables

Hash
hunctionCA 5

CA

0 1 2 3 4 5

add(“CA”)

b

mod 6

NYMA

So what goes wrong?

hashIndex

k1

hashIndex

k2

0 1 2 3 4 5

4/17/18

3

Can we have perfect hash functions?

¨ Perfect hash functions map each value to a different
index in the hash table

¨ Impossible in practice
● don’t know size of the array
● Number of possible values far far exceeds the

array size
● no point in a perfect hash function if it takes too

much time to compute

Collision Resolution

Two ways of handling collisions:

1. Chaining 2. Open Addressing

Chaining

hashIndex 3

NY VA

0 1 2 3 4 5

New YorkCA

CA

bucket/chain
(linked list)

add(“NY”)

add(“CA”)

lookup("CA")

Open Addressing

hashIndexCA 3

NY CA VA

0 1 2 3 4 5

probing: Find another available space add(“CA”)

MA NY CA VA

0 1 2 3 4 5

Different probing strategies

linear probing:
search the array in
order:
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

quadratic probing:
search the array in
nonlinear sequence:
i, i+12, i+22, i+32 . . .

clustering:
problem where nearby
hashes have very similar
probe sequence so we
get more collisions

Load Factor
18

Load factor

0 1

waste of memory too slow

best range

What happens when the array becomes too full?
i.e. load factor gets a lot bigger than ½?

no longer expected
constant time operations

4/17/18

4

Resizing

¨ double the size.
¨ reinsert / rehash all

elements to new array
¨ Why not simply copy

into first half?

Solution: Dynamic resizing

Let's try it

element a b c d e

hashCode 0 9 17	 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c

d

e

Let's try it

element a b c d e

hashCode 0 9 17	 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cd e

Note: Using linear probing, no resizing

Poll

element a b c d e

hashCode 0 9 17	 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

What is the final state of the hash table if you use
open addressing with quadratic probing (assume
no resizing)?

Let's try it

element a b c d e

hashCode 0 9 17	 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b cde

Note: Using quadratic probing, no resizing

Let's try it

element a b c d e

hashCode 0 9 17	 11 19

Insert the following elements (in order) into an array of size 6:

0 1 2 3 4 5

a b c
0 1 2 3 4 5 6 7 8 9 10 11

a bc de

Note: Using quadratic probing, resizing if load > ½

4/17/18

5

Collision Resolution Summary

¨ store entries in
separate chains (linked
lists)

¨ can have higher load
factor/degrades
gracefully as load
factor increases

¨ store all entries in table
¨ use linear or quadratic

probing to place items
¨ uses less memory
¨ clustering can be a

problem — need to be
more careful with
choice of hash function

Chaining Open Addressing

25

Application: Hash Map

Map<K,V>{

void put(K key, V value);

void update(K key, V value);

V get(K key);

V remove(K key);

}

Application: Hash Map

Hash
hunctionCalifornia 5

CA

0 1 2 3 4 5

put("California",“CA”)
get("California")

b

Idea: finding an element in an array takes constant time
when you know which index it is stored in

mod 6

NYMA

HashMap in Java

¨ Computes hash using key.hashCode()
¤ No duplicate keys

¨ Uses chaining to handle collisions
¨ Default load factor is .75
¨ Java 8 attempts to mitigate worst-case

performance by switching to a BST-based chaining!

28

Hash Maps in the Real World

¨ Network switches
¨ Distributed storage
¨ Database indexing
¨ Index lookup (e.g., Dijkstra's shortest-path algorithm)
¨ Useful in lots of applications…

29

