Recitation on analysis of algorithms

What does it mean? $f(n)$ is $O(g(n))$ iff There is a positive constant c and a real number x such that: $\mathrm{f}(\mathrm{n}) \leq \mathrm{c}^{*} \mathrm{~g}(\mathrm{n}) \quad$ for $\mathrm{n} \geq \mathrm{N}$	Let $f(n)$ and $g(n)$ be two functions. $f(n)>=0 \text { and } g(n)>=0 .$
We showed that $n+6$ is $O(n)$. In fact, you can change the 6 to any constant c you want and show that $n+c$ is $O(n)$	It means that as n gets larger and larger, any constant c that you use becomes meaningless in relation to n, so throw it away.
An algorithm that executes O (n) steps on input of size n is called a linear algorithm	The difference between executing 1,000,000 steps and $1,000,0006$ is insignificant

We showed that $n+6$ is $O(n)$.
In fact, you can change the 6 to
any constant c you want and

An algorithm that executes O(n) steps on input of size n is called a linear algorithm

Some Notes on O()

- Why don't logarithm bases matter?
- For constants $x, y: O\left(\log _{x} n\right)=O\left(\left(\log _{x} y\right)\left(\log _{y} n\right)\right)$
- Since $\left(\log _{x} y\right)$ is a constant, $O\left(\log _{x} n\right)=O\left(\log _{y} n\right)$
- Usually: $O(f(n)) \times O(g(n))=O(f(n) \times g(n))$
- Such as if something that takes $g(n)$ time for each of $f(n)$ repetitions . . . (loop within a loop)
- Usually: $O(f(n))+O(g(n))=O(\max (f(n), g(n)))$
- "max" is whatever's dominant as n approaches infinity
- Example: $O\left(\left(n^{2}-n\right) / 2\right)=O\left((1 / 2) n^{2}+(-1 / 2) n\right)=O\left((1 / 2) n^{2}\right)$

$$
=O\left(n^{2}\right)
$$

Oft-used execution orders

In the same way, we can prove these kinds of things:

1.	$\log (n)+20$	is $O(\log (n))$				
2.	$n+\log (n)$	is $O(n)$	(logarithmic)	(linear)		
:---	:---	:---				
3. $n / 2$ and $3^{*} n$	are $O(n)$					
4. $n^{*} \log (n)+n$	is $n * \log (n)$					
5. $n^{2}+2^{*} n+6$	is $O\left(n^{2}\right)$	(quadratic)				
6. $n^{3}+n^{2}$	is $O\left(n^{3}\right)$	(cubic)				
7. $2^{n}+5 n$	is $O\left(2^{n}\right)$	(exponential)				

(exponential)

Formal definition of $\mathrm{O}(\mathrm{n})$ We give a formal definition and	Let $f(n)$ and $g(n)$ be two functions.
show how it is used:	
$f(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$)	
iff	
There is a positive constant c and a real number N such that: $f(n) \leq c^{*} g(n) \quad \text { for } n \geq N$	$\begin{aligned} & \quad n+6 \quad \begin{array}{c} \text {---this is } f(n) \\ <\text { if } 6<=n, \text { write as }> \\ n+n \end{array} \\ & =\quad \text { <arith> } \end{aligned}$
Example:	$\stackrel{2{ }^{2} \mathrm{n}}{\text { <choose c }=2>}$
$f(n)=n+6$	$=c^{*} \mathrm{n}$---this is $\mathrm{c}^{*} \mathrm{~g}(\mathrm{n})$
We show that $n+6$ is $O(n)$	
	So choose c = 2 and $\mathrm{N}=6$

An algorithm executes $\left(7^{*} n+6\right) / 3+\log (n) \quad$ steps. It's obviously linear, i.e. O(n)

Understand? Then use informally

1. $\log (n)+20$	is $O(\log (n))$	(logarithmic)
2. $n+\log (n)$	is $O(n)$	(linear)
3. $n / 2$ and $3^{*} n$	are $O(n)$	
4. $n^{*} \log (n)+n$	is $n^{*} \log (n)$	
5. $n^{2}+2^{*} n+6$	is $O\left(n^{2}\right)$	(quadratic)
6. $n^{3}+n^{2}$	is $O\left(n^{3}\right)$	(cubic)
7. $2^{n}+5 n$	is $O\left(2^{n}\right)$	(exponential)

Once you fully understand the concept, you can use it informally. Example:

runtimeof MergeSort

/** Sort b[h..k]. */
public static void $\mathrm{mS}($ Comparable[] b, int h , int k$)$ \{ if ($\mathrm{h}>=\mathrm{k}$) return;
int $\mathrm{e}=(\mathrm{h}+\mathrm{k}) / 2$; $\mathrm{mS}(\mathrm{b}, \mathrm{h}, \mathrm{e})$; $\mathrm{mS}(\mathrm{b}, \mathrm{e}+1, \mathrm{k})$; $\operatorname{merge}(\mathrm{b}, \mathrm{h}, \mathrm{e}, \mathrm{k})$;
\}
We will count the number of comparisons mS makes
Use $T(n)$ for the number of array element comparisons that mS makes on an array of size n

Throughout, we use mS for mergeSort, to make slides easier to read

Runtime

public static void mS (Comparable[] b, int h , int k$)$ \{ if ($\mathrm{h}>=\mathrm{k}$) return
int $\mathrm{e}=(\mathrm{h}+\mathrm{k}) / 2 ; \quad \mathrm{T}(0)=0$ $\mathrm{mS}(\mathrm{b}, \mathrm{h}, \mathrm{e}) ; \quad \mathrm{T}(1)=0$ $\mathrm{mS}(\mathrm{b}, \mathrm{e}+1, \mathrm{k})$; merge(b, h, e, k);
\}

Use $T(n)$ for the number of array element comparisons that mS makes on an array of size n

Runtime

public static void $\mathrm{mS}($ Comparable[] b, int h , int k$)$ \{ if ($\mathrm{h}>=\mathrm{k}$) return;
int $\mathrm{e}=(\mathrm{h}+\mathrm{k}) / 2$;
$\mathrm{mS}(\mathrm{b}, \mathrm{h}, \mathrm{e})$;
$\mathrm{mS}(\mathrm{b}, \mathrm{e}+1, \mathrm{k})$;
merge(b, h, e, k);
\}
Recursion: $\mathrm{T}(\mathrm{n})=2$ * $\mathrm{T}(\mathrm{n} / 2)+$ comparisons made in merge

Simplify calculations: assume n is a power of 2
/** Sort $\mathrm{b}[\mathrm{h} . \mathrm{k}]$. Pre: $\mathrm{b}[\mathrm{h} . . \mathrm{e}]$ and $\mathrm{b}[\mathrm{e}+1 . \mathrm{k}]$ are already sorted.*/
public static void merge (Comparable b[] , int h , int e , int k) \{

$$
\begin{aligned}
& \text { Comparable[] c=copy }(b, h, e) ; \quad O(e+1-h) \\
& \text { int } \mathrm{i}=\mathrm{h} \text {; int } \mathrm{j}=\mathrm{e}+1 \text {; int } \mathrm{m}=0 \text {; } \\
& \text { for }(\mathrm{i}=\mathrm{h} ; \mathrm{i}!=\mathrm{k}+1 ; \mathrm{i}=\mathrm{i}+1) \text { \{ } \\
& \text { if }(\mathrm{j}<=\mathrm{k} \& \&(\mathrm{~m}>\mathrm{e}-\mathrm{h} \| \mathrm{b}[\mathrm{j}] . \operatorname{compareTo}(\mathrm{c}[\mathrm{~m}])<=0))\{ \\
& b[i]=b[j] ; j=j+1 \text {; } \\
& \text { \} } \\
& \text { else }\{ \\
& \text { Loop body: } \mathrm{O}(1) \text {. }
\end{aligned}
$$

/** Sort b[h..k]
Pre: $\mathrm{b}[\mathrm{h} . . \mathrm{e}]$ and $\mathrm{b}[\mathrm{e}+1 . . \mathrm{k}]$ are sorted.*/
public static void merge (Comparable b[] , int h , int e , int k) \{
Comparable[] c= $\operatorname{copy}(\mathrm{b}, \mathrm{h}, \mathrm{e})$;
int $\mathrm{i}=\mathrm{h}$; int $\mathrm{j}=\mathrm{e}+1$; int $\mathrm{m}=0$;
$/ *$ inv: $\mathrm{b}[\mathrm{h} . . \mathrm{i}-1]$ contains its final, sorted values $\mathrm{b}[\mathrm{j} . \mathrm{k}]$ remains to be transferred c[m..e-h] remains to be transferred */
for $(\mathrm{i}=\mathrm{h} ; \mathrm{i}!=\mathrm{k}+1 ; \mathrm{i}++$) $\{$
if $(\mathrm{j}<=\mathrm{k} \& \&(\mathrm{~m}>\mathrm{e}-\mathrm{h} \| \mathrm{b}[\mathrm{j}]$.compare $\mathrm{To}(\mathrm{c}[\mathrm{m}])<=0))\{$ $\mathrm{b}[\mathrm{i}]=\mathrm{b}[\mathrm{j}] ; \mathrm{j}++$;
\}
else \{

$\mathrm{b}[\mathrm{i}]=\mathrm{c}[\mathrm{m}] ; \mathrm{m}++$;
\}
,
\}
h
b final, sorted

\}

Runtime

We show how to do an analysis, assuming n is a power of 2 (just to simplify the calculations)

Use $\mathrm{T}(\mathrm{n})$ for number of array element comparisons to mergesort an array segment of size n

```
public static void mS(Comparable[] b, int h, int k) {
        if (h >= k) return;
        int e= (h+k)/2;
        mS(b,h, e); T(e+1-h) comparisons
        mS(b, e+1,k); T(k-e) comparisons
        merge(b, h, e, k); (k+1-h) comparisons
    }
```

Thus: $\mathrm{T}(\mathrm{n})<2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$, with $\mathrm{T}(0)=0, \mathrm{~T}(1)=0$

Runtime

Thus, for any n a power of 2 , we have

$$
\begin{aligned}
& \mathrm{T}(1)=0 \\
& \mathrm{~T}(\mathrm{n})=2 * \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \quad \text { for } \mathrm{n}>1
\end{aligned}
$$

We can prove that

$$
\mathrm{T}(\mathrm{n})=\mathrm{n} \lg \mathrm{n} \quad \lg \mathrm{n} \text { means } \log _{2} \mathrm{n}
$$

Quicksort

h	j	k
$<=\mathrm{x}$	x	$>=\mathrm{x}$

- Pick some "pivot" value in the array
- Partition the array:
- Finish with the pivot value at some index j
- everything to the left of $\mathrm{j} \leq$ the pivot
- everything to the right of $j \geq$ the pivot
- Run QuickSort on b[h..j-1] and b[j+1..k]
- Both have "average case" O(n lg n) runtime
- MergeSort always has $O(n \lg n$) runtime
- Quicksort has "worst case" $O\left(\mathrm{n}^{2}\right)$ runtime
- Let's prove it!

Runtime of Quicksort	
Base case: array segment of 0 or 1 elements takes no comparisons $T(0)=T(1)=0$ - Recursion: - partitioning an array segment of n elements takes n comparisons to some pivot - Partition creates length m and r segments (where $m+r=n-1$) $-T(n)=n+T(m)+T(r)$	```/** Sort b[h..k] */ public static void QS (int[] b, int h, int k) { if (k-h<1) return; int j= partition(b, h, k); QS(b, h, j-1); QS(b, j+1, k); }```

Runtime of Quicksort

- $T(n)=n+T(m)+T(r)$
- Look familiar?
- If m and r are balanced
($m \approx r \approx(n-1) / 2$), we know
$\mathrm{T}(\mathrm{n})=\mathrm{n} \lg \mathrm{n}$.
- Other extreme:
- $m=n-1, r=0$
$-T(n)=n+T(n-1)+T(0)$
/** Sort b[h..k] */
public static void $Q S$
(int[] b, int h, int $k)\{$
if $(\mathrm{k}-\mathrm{h}<1)$ return;
int $\mathrm{j}=$ partition(b, $\mathrm{h}, \mathrm{k})$;
QS(b, h, j-1);
QS(b, j+1, k);
\}

Worst Case Runtime of Quicksort	
- When $T(n)=n+T(n-1)+T(0)$ - Hypothesis: $\mathrm{T}(\mathrm{n})=\left(\mathrm{n}^{2}-\mathrm{n}\right) / 2$ - Base Case: $\mathrm{T}(1)=\left(1^{2}-1\right) / 2=0$ - Inductive Hypothesis: assume $T(k)=\left(k^{2}-k\right) / 2$ $\begin{aligned} \mathrm{T}(\mathrm{k}+1) & =\mathrm{k}+\left(\mathrm{k}^{2}-\mathrm{k}\right) / 2+0 \\ & =\left(\mathrm{k}^{2}+k\right) / 2 \\ & =\left((k+1)^{2}-(k+1)\right) / 2 \end{aligned}$	```/** Sort b[h..k] */ public static void QS (int[] b, int h, int k) { if (k-h<1) return; int j= partition(b, h, k); QS(b, h, j-1); QS(b, j+1, k);```
- Therefore, for all $\mathrm{n} \geq 1$: $T(n)=\left(n^{2}-n\right) / 2=O\left(n^{2}\right)$	\}

Worst Case Space of Quicksort	
You can see that in the worst case, the depth of recursion is $O(n)$. Since each recursive call involves creating a new stack frame, which takes space, in the worst case, Quicksort takes space $O(n)$. That is not good! To get around this, rewrite QuickSort so that it is iterative but it sorts the smaller of two segments recursively. It is easy to do. The implementation in the java class that is on the website shows this.	$\begin{aligned} & \text { /** Sort b[h..k]*/ } \\ & \text { public static void QS } \\ & \quad(\text { int }[] \mathrm{b}, \text { int } \mathrm{h}, \text { int } \mathrm{k})\{ \\ & \text { if }(\mathrm{k}-\mathrm{h}<1) \text { return; } \\ & \text { int } \mathrm{j}=\text { partition }(\mathrm{b}, \mathrm{~h}, \mathrm{k}) \text {; } \\ & \mathrm{QS}(\mathrm{~b}, \mathrm{~h}, \mathrm{j}-1) \text {; } \\ & \mathrm{QS}(\mathrm{~b}, \mathrm{j}+1, \mathrm{k}) ; \end{aligned}$

