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Prelim Review
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Heaps
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Review: Binary heap

1

2 99

4 3

99

4 1

2 3

min heap max heapPriorityQueue
● Maintains max or min of 

collection (no duplicates)
● Follows heap order 

invariant at every level
● Always balanced!
● worst case: 

O(log n) insert 
O(log n) update
O(1)       peek
O(log n) removal
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Review: Binary heap

1

2 99

4 3

min heap
How do we insert element 0 into the min 
heap?

After we remove the root node, what is the 
resulting heap?

How are heaps usually 
represented? If we want the right 
child of index i, how do we access it?
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Hashing
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Review: Hashing

MA NY CA
0 1 2 3 4 5

HashSet<String>

Method Expected 
Runtime

Worst 
Case

add O(1) O(n)

contains O(1) O(n)

remove O(1) O(n)

load factor, for open addressing:

number of non-null entries
----------------------------------------

size of array

load factor, for chaining:

size of set
----------------------------------------

size of array

If load factor becomes > 1/2, create an 
array twice the size and rehash every 
element of the set into it, use new array
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Review: Hashing

to

be

or

not

that

is

HashMap<String,Integer>

2

2

1

1

1

1

the 1

1question

MA NY CA
0 1 2 3 4 5

HashSet<String>

Method Expected 
Runtime

Worst 
Case

add O(1) O(n)

contains O(1) O(n)

remove O(1) O(n)
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Review: Hashing

Hash 
Function

value int

0 1 2 3 4 5

b

Idea: finding an element in an array takes constant time 
when you know which index it is stored in
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Collision resolution
Two ways of handling collisions:

1. Chaining                                 2.  Open Addressing 
with linear 

probing
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Load factor: b’s saturation

Hash 
Function

MA 0

MA NY VA

0 1 2 3 4 5

add(“MA”)

b

Load factor:
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Question: Hashing

MA NY SC VA

0 1 2 3 4 5

b

Using linear probing to resolve collisions,

1. Add element SC (hashes to 3).
2. Remove VA (hashes to 5).
3. Check to see if MA (hashes to 0) is in the set.
4. What should we do if we override equals()?
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Trees
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Definition
Data structure with nodes
Each node has:

0 or more children
Exactly 1 parent (except the root which has none)
All nodes are reachable from root

Binary tree - each node has at most 2 children
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Use in Recursion
Data Structure well suited for recursion

Binary tree is either
Empty
A value (root), left binary tree, right binary tree

The first becomes the base case and the second 
becomes the recursive case
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Traversals
Pre-Order (Root, Left ST, Right ST)
In-Order (Left ST, Root, Right ST)
Post-Order (you get the pattern :) )
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Expression Trees
Nodes represent operations or values

Leaf nodes are values.
Non-leaf nodes are 
operations that work on 
their children.
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Post-Order
Post-order traversal output is code for a stack 
machine. (recursive descent parsing)

1.Visit nodes in tree in post-order.
2.Push results from a node onto a stack.
3.When you hit a node that is an operation, 

pop off the required number of elements 
from the stack and then push the result.

17



Stack machine as postorder traversal

+

*

+

3

2

4

5

● Each node evaluates its children 
(arguments) before itself (operator)

● Result becomes the argument for the 
next highest level
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Stack machine as postorder traversal

+

*

+

3

2

4

5

● Each node evaluates its children 
(arguments) before itself (operator)

● Result becomes the argument for the 
next highest level

Children are evaluated to 3 and 4, 
add operator yields 7.

2 is evaluated first. However, the other child subtree needs to 
be evaluated before the product operator can proceed.
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Stack machine as postorder traversal

+

*

2

5

● Each node evaluates its children 
(arguments) before itself (operator)

● Result becomes the argument for the 
next highest level

7

Children are evaluated to 2 and 7, 
multiply operator yields 14.
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Stack machine as postorder traversal

+

14 5

● Each node evaluates its children 
(arguments) before itself (operator)

● Result becomes the argument for the 
next highest level

Children are evaluated to 14 and 5, 
add operator yields 19.
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Stack machine as postorder traversal

19

● Each node evaluates its children 
(arguments) before itself (operator)

● Result becomes the argument for the 
next highest level
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Graphs
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Planar Graphs
Graph is planar if it can be drawn in the plane without edges 
crossing.  This allows you to 4-color a graph

Yes NO NO
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Question: What is BFS and DFS?

A

1. Starting from node A, run BFS and DFS to find node Z. What is the order 
in which nodes were processed? Visit neighbors in alphabetical order. 

2. What is the difference between DFS and BFS?
3. What algorithm would be better to use if our graph were near infinite and 

a node was nearby?
4. Is Dijkstra’s more like DFS or BFS? Why?
5. Can you run topological sort on this graph?

B

C

E

D

F
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Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE	from	u.

Precondition:	u	is	not	visited*/
public	static	void	dfs(int u)	{

}
1

0

2

5

3

4

6

1

0

2

5

3

4

6

Start End

Let	u	be	1

The	nodes	REACHABLE	
from	1	are	1,	0,	2,	3,	5
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Depth-First	Search
/**	Visit	all	nodes	REACHABLE	from	u.

Precond:	Node	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

}
1

0

2

5

3

4

6

Let	u	be	1

The	nodes	
REACHABLE	from	1	
are	1,	0,	2,	3,	5
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Depth-First	Search
/**	Visit	all	nodes	REACHABLE	from	u.

Precond:	Node	u	is	unvisited.	*/
public	static	void	dfs(int u)	{
visited[u]	=	true;

} 1

0

2

5

3

4

6

Let	u	be	1

The	nodes	
REACHABLE	from	1	
are	1,	0,	2,	3,	5
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Depth-First	Search
/**	Visit	all	nodes	REACHABLE	from	u.

Precond:	Node	u	is	unvisited.	*/
public	static	void	dfs(int u)	{
visited[u]	=	true;

} 1

0

2

5

3

4

6

Let	u	be	1 (visited)

The	nodes	to	be	
visited	are	0,	2,	3,	5
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Depth-First	Search
/**	Visit	all	nodes	REACHABLE	from	u.

Precond:	Node	u	is	unvisited.	*/
public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}

Let	u	be	1 (visited)

The	nodes	to	be	
visited	are	0,	2,	3,	5

Have	to	do	DFS	on	
all	unvisited	
neighbors	of	u!

1

0

2

5

3

4

6
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Depth-First	Search
Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1	…

1

0

2

5

3
4
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search
Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0	…

1

0

2

5

3
4
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search
Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2	…

1

0

2

5

3

4
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search
Suppose	the	for
loop	visits	neighbors	
in	numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2,	3	…

1

0

2

5

3

4
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search

Suppose	the	for
loop	visits	neighbors	
in	numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2,	3,	5

1

0

2

5

3

4

6
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search

Suppose	n nodes	are	
REACHABLE	along	e edges	
(in	total).	What	is
• Worst-case	execution?
• Worst-case	space?
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Depth-First	Search

Example:	Use	different	way	(other	than	array	visited)	to	
know	whether	a	node	has	been	visited

Example:	We	really	haven’t	said	what	data	structures	are	
used	to	implement	the	graph

That’s	all	there	is	to	basic	
DFS.	You	may	have	to	
change	it	to	fit	a	particular	
situation.

If	you	don’t	have	this	spec	
and	you	do	something	
different,	it’s	probably	
wrong.
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/**	Visit	all	nodes	REACHABLE	from	u.
Precond:	Node	u	is	unvisited.	*/

public	static	void	dfs(int u)	{
visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:
if	v	is	unvisited	then	dfs(v);

}



Recommended Practice for Dijkstra

1. Create a graph with labeled nodes and pick a starting node, x
2. Draw a table to keep track of the Frontier, Settled, and Far Off sets for 

each iteration
3. Include in the table, the distance from x to each node in the graph for 

each iteration
4. Fill in the table by working through Dijkstra’s
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Big O
See the Study Habits Note on the course Piazza. There is a 2-
page pdf file that says how to learn what you need to know for 
O-notation.
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Big O definition
f(n) is O(g(n)) 

iff
There is a positive constant c
and a real number N such that:

f(n) ≤  c * g(n) for  n ≥ N

N

c * g(n)

f(n)

nIs merge sort O(n3)?

Yes, but not tightest upper bound
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Review: Big O 
Is used to classify algorithms by how they respond to changes in 
input size n. 
Important vocabulary:
● Constant time: O(1)             
● Logarithmic time: O(log n)
● Linear time: O(n)
● Quadratic time: O(n2)

Let f(n) and g(n) be two functions that tell how many statements 
two algorithms execute when running on input of size n.
f(n) >= 0 and g(n) >= 0.
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Review: Informal Big O rules
1. Usually: O(f(n)) × O(g(n))  =  O(f(n) × g(n))

– Such as if something that takes g(n) time for each of f(n) repetitions . . . 
(loop within a loop)

2.    Usually: O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
– “max” is whatever’s dominant as n approaches infinity
– Example: O((n2-n)/2)  =  O((1/2)n2 + (-1/2)n) = O((1/2)n2)

=  O(n2)
3.    Why don’t logarithm bases matter?

–For constants x, y: O(logx n)  =  O((logx y)(logy n))

–Since (logx y) is a constant, O(logx n) = O(logy n) 

Test will not require 
understanding such 
rules for logarithms
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Review: Big O
1. log(n)  + 20         is O(log(n))       (logarithmic)
2. n + log(n)            is       O(n)              (linear)
3. n/2  and  3*n       are    O(n)
4. n * log(n)  + n      is      n * log(n)
5. n2  + 2*n + 6   is      O(n2)       (quadratic)
6. n3 + n2 is      O(n3)            (cubic)
7. 2n + n5     is      O(2n)            (exponential)
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Review: Big O examples
1. What is the runtime of an algorithm that runs insertion sort on an 

array O(n2) and then runs binary search O(log n) on that now 
sorted array?

1. What is the runtime of finding and removing the fifth element from a 
linked list? What if in the middle of that remove operation we 
swapped two integers exactly 100000 times, what is the runtime 
now? 

1. What is the runtime of running merge sort 4 times? n times?

Analysis of Algorithms
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Other topics to know
Refer to study guide :)
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Spanning Trees NOT ON TEST
Two approaches. A spanning tree is a:
- max set of edges with no cycles

Algorithm:
 Repeat until no longer possible:
          Find a cycle and delete one of its edges
- minimal set of edges that connect all nodes

      Algorithm:
         Start with all nodes (each one is a component), no edges.
         Repeat until no longer possible:
    Add an edge that connects two unconnected components.
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Kruskal’s minimum spanning tree algorithm
Definition: minimal set of edges that connect all nodes
Algorithm:

Start with all nodes (each one is a component), no edges.
Repeat until no longer possible:
Add an edge that connects two unconnected components.

Kruskal says to choose an edge with minimum weight
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Prim’s minimum spanning tree algorithm
Definition: minimal set of edges that connect all nodes
Algorithm:

Start with all nodes (each one is a component), no edges.
Repeat until no longer possible:
Add an edge that connects two unconnected components.

Prim says
(1) In the first step, choose one node n, arbitrarily.
(2) When adding an edge, choose one with minimum weight that is 

connected to n.
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