
Lecture 25 – Spring 2017

Race Conditions & Synchronization

Gries office hours

A number of students have asked for time to talk over how to study
for the prelim.
Gries will hold office hours at the times below for this purpose.
Also, read “basicLearningMethods.pdf” in the pinned Piazza note
“Supplementary material”.

Tues. (today) 1-4PM.
Wed. (tomorrow) 10-noon

2

How end of course works

A8 due last day of classes: Wednesday, 10 May
Firm deadline. Nothing after that.
We grade A8 as quickly as possible, then figure out tentative course
letter grades. Make them available on the CMS.
You complete a CMS assignment: Do you accept grade or take final.
Taking the final can lower as well as raise your grade.
Final is Sunday, 21 May, at 2PM.

3

Purpose of this lecture

Show you Java constructs for eliminating race
conditions, allowing threads to access a data structure in
a safe way but allowing as much concurrency as
possible. This requires

¨  (1) The locking of an object so that others cannot
access it, called synchronization.

¨  (2) Use of other Java methods: Wait() and NotifyAll()

As an example, throughout, we use a bounded buffer.

4

Recap

¨  A “race condition” arises if two threads try to read and
write the same data

¨  Might see the data in the middle of an update in a
inconsistent stare”
¤ A “race condition”: correctness depends on the update

racing to completion without the reader managing to
glimpse the in-progress update

¤ Synchronization (also known as mutual exclusion) solves this

5

Important example: bounded buffer

A baker produces breads and puts them on the shelf, like a queue.
Customers take them off the shelf.

¨  Threads A: produce loaves of bread and put them in the queue

¨  Threads B: consume loaves by taking them off the queue

 This is the producer/consumer model, using a bounded buffer, the
shelf (which can contain at most 20 (say) loaves of bread).

6

producer shelf consumer

Array implementation of a queue of max size 6

Array b[0..5]

7

 0 1 2 3 4 5 b.length

push values 5 3 6 2 4

5 3 6 2 4 b
For later purposes,
we show how to implement
a bounded queue —one
with some maximum size—
in an array.

A neat little implementation!
We give you code for it on
course website.

Array implementation of a queue of max size 6

Array b[0..5]

8

 0 1 2 3 4 5 b.length

pushed values 5 3 6 2 4

Now, pop, pop, pop

5 3 6 2 4 b

Array implementation of a queue of max size 6

Array b[0..5]

9

 0 1 2 3 4 5 b.length

push values 5 3 6 2 4

pop, pop, pop

push value 1 3 5

2 4 1 3 5 Values wrap around!! b

Array implementation of a queue
10

 0 1 2 3 4 5 b.length

2 4 1 3 5 Values wrap around!! b

Fields and the class invariant
 int[] b; // The n elements of the queue are in
 int n; // b[h], b[(h+1) % b.length], ... b[(h+n-1) % b.length]
 int h; // 0 <= h < b.length

h

Insert 7 (assuming there’s space)
b[(h+n)% b.length]= 5;
n= n+1;

Pop (assuming not empty)
value= b[h];
h= (h+1) % b.length

Java Synchronization (Locking)
11

public AQ<String> aq= new AQ<String>();

public void doSomethingTo-aq() {

 code to change aq

}

We need a way to prohibit other threads from using
AQ aq while the code to change aq is being
executed. For this purpose, we use Java keyword
synchronize

Java Synchronization (Locking)
12

private AQ<String> aq= new AQ<String>();

public void doSomethingTo-aq() {

 code to change aq

}

While this method is executing the synchronized block,
object aq is locked. No other thread can obtain the lock.
Only one thread can own the lock at a time

 synchronized block

synchronize {

}

Java Synchronization (Locking)
13

public void doSomething() {
 synchronized (this) {
 ...
 }
}

• You can lock on any object, including this

public synchronized void doSomething() {
 ...
}

Below is syntactic sugar for the stuff below.
They mean the same thing.

Why do this? Suppose method
doSomething is within an object
of class ArrayQueue, and we
want to prohibit other methods
within ArrayQueue from being
executed.

Bounded Buffer
14

/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq

 /** Constructor: empty bounded buffer of max size n*/
public BoundedBuffer(int n) {
 aq= new ArrayQueue(n);
}

}
Separation of concerns:
1. How do you implement a queue in an array?
2. How do you implement a bounded buffer, which
allows producers to add to it and consumers to take
things from it, all in parallel?

Bounded Buffer
15 /** An instance maintains a bounded buffer of limited size */

class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq
 /** Put v into the bounded buffer.*/
 public void produce(Integer v) {
 aq.put(v);
 }
}

We know more code will be put in method produce, and we
want to be sure that no other method in this Bounded Buffer
object can do anything with this object until method
produce is finished. So stick in a synchronize keyword.

synchronized

Bounded Buffer: producer

16
/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq
 /** Put v into the bounded buffer.*/
 public synchronized void produce(Integer v) {
 aq.put(v);
 }
} What happens of aq is full?
We have to wait until it becomes non-full —until there
is a place to put v.
Somebody has to buy a loaf of bread before we can
put more bread on the shelf.
We use a while-loop to wait, and we also need to give
p the lock so some other thread can buy (consume) a
loaf of bread.

Bounded Buffer: producer

17
/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer implemented in aq
 /** Put v into the bounded buffer.*/
 public synchronized void produce(Integer v) {
 while (aq.isFull())
 try { wait(); }
 catch (InterruptedExecution e) {}
 aq.put(v);
 … more to come …
 }
}

Need a while-loop to wait.
An if-statement will no work.

wait(): put on a
list of waiting
threads, give

up lock so
another thread

can have it

If the wait is interrupted for
some reason, just continue

Bounded Buffer: producer

18
/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer implemented in aq
 /** Put v into the bounded buffer.*/
 public synchronized void produce(Integer v) {
 while (aq.isFull())
 try { wait(); }
 catch (InterruptedExecution e) {}
 aq.put(v);

 }
}

notifyAll();

Another thread may
be waiting because
the buffer is empty

---no more bread.
Have to notify all

waiting threads that
it is not empty

The consumer —method consume— is similar.
Let’s look at code.

Things to notice

¨  Use a while loop because we can’t predict exactly
which thread will wake up “next”

¨  wait() waits on the same object that is used for
synchronizing (in our example, this, which is this
instance of the bounded buffer)

¨  Method notify() wakes up one waiting thread,
notifyAll() wakes all of them up

19

About wait(), wait(n), notify(), notifyAll()
20

A thread that holds a lock on object OB
and is executing in its synchronized code
can make (at least) these calls.

1. wait(); It is put into set 2. Another thread
from set 1 gets the lock.

2. wait(n); It is put into set 2 and stays
there for at least n millisecs. Another
thread from set 1 gets the lock.

3. notify(); Move one possible thread from
set 2 to set 1.

4. notifyAll(); Move all “threads” from set 2
to set 1.

Two sets:

1. Runnable
threads: Threads
waiting to get the
OB lock.

2. Waiting
threads: Threads
that called wait
and are waiting to
be notified

About wait(), wait(n), notify(), notifyAll()
21

A thread that executing in its synchronized
code can make (at least) these calls.

1. wait(); It is put into set 2. Another thread
from set 1 gets the lock.

3. notify(); Move one “possible” thread
from set 2 to set 1.

4. notifyAll(); Move all threads from set 2
to set 1.

Two sets:

1. Runnable
threads: Threads
waiting to get the
OB lock.

2. Waiting
threads: Threads
that called wait
and are waiting to
be notified

Notify() a lot less expensive than
notifyAll(). Why not use it all the time?
Because the wrong thread may be
notified, giving deadlock

Should one use notify() or notifyAll()

But suppose there are two kinds of bread on the shelf —and one
still picks the head of the queue, if it’s the right kind of bread.

 Using notify() can lead to a situation in which no one can make
progress. We illustrate with a project in Eclipse, which is on the
course website.

notifyAll() always works; you need to write documentation if
you optimize by using notify()

22

WHY use of notify() may hang.
23

Work with a bounded buffer of length 1.
1. Consumer W gets lock, wants White bread,
finds buffer empty, and wait()s: is put in set 2.
2. Consumer R gets lock, wants Rye bread,
finds buffer empty, wait()s: is put in set 2.
3. Producer gets lock, puts Rye in the buffer,
does notify(), gives up lock.
4. The notify() causes one waiting thread to be
moved from set 2 to set 1. Choose W.
5. No one has lock, so one Runnable thread, W, is given lock.
W wants white, not rye, so wait()s: is put in set 2.
6. Producer gets lock, finds buffer full, wait()s: is put in set 2.
All 3 threads are waiting in set 2. Nothing more happens.

Two sets:

1. Runnable:
threads

waiting to
get lock.

2. Waiting:

threads
waiting to

be notified

Using Concurrent Collections...
24

Java has a bunch of classes to make synchronization easier.

It has synchronized versions of some of the Collections classes

It has an Atomic counter.

From spec for HashSet
25

… this implementation is not synchronized. If multiple threads
access a hash set concurrently, and at least one of the threads
modifies the set, it must be synchronized externally. This is
typically accomplished by synchronizing on some object that
naturally encapsulates the set. If no such object exists, the set
should be "wrapped" using method Collections.synchronizedSet
This is best done at creation time, to prevent accidental
unsynchronized access to the set:

 Set s = Collections.synchronizedSet(new HashSet(...));

Using Concurrent Collections...
26

import java.util.concurrent.atomic.*;

public class Counter {
 private static AtomicInteger counter;

 public Counter() {
 counter= new AtomicInteger(0);
 }

 public static int getCount() {
 return counter.getAndIncrement();
 }
}

Summary
27

Use of multiple processes and multiple threads within each
process can exploit concurrency

n  may be real (multicore) or virtual (an illusion)
Be careful when using threads:

n  synchronize shared memory to avoid race conditions
n  avoid deadlock
Even with proper locking concurrent programs can have other
problems such as “livelock”

Serious treatment of concurrency is a complex topic (covered in
more detail in cs3410 and cs4410)
Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/
index.html

