
 Threads & Concurrency

Lecture 24– CS2110 – Spring 2017

Due d Due date of A7 About A5-A6

We have changed the due date of A7 Friday, 28 April.

But the last date to submit A7 remains the same:

29 April.

We make the last date be 29 April so that people who are
working on A8 can use our solution to A7 beginning on 30 April

We will get caught up on grading A6 and regrading A5 and A6.

2

Today: New topic: concurrency

¨  Modern computers have “multiple cores”	
¤  Instead of a single CPU (central processing unit) on the chip

5-10 common. Intel has prototypes with 80!

¨  We often run many programs at the same time

¨  Even with a single core, your program may have more than one
thing “to do” at a time
¤ Argues for having a way to do many things at once

3

Why multicore?

Moore’s Law: Computer speeds and memory densities
nearly double each year

4

5

Magnetic-core memory. A penny a bit

What memory was like,
1955..1975.
At 1 penny per bit, a
gigabyte would cost

 $80,000, 000

From Wikipedia
upload.wikimedia.org/
wikipedia/commons/d/da/
KL_CoreMemory.jpg

Each ring is either
magnetized or
unmagnetized (1 or 0).

To set (Y4, X3) send
impulse down wires Y4
and X3. Enough voltage
to change that one but not
others. Sense wire goes
through all cores and
detects whether something
changed.

6

Magnetic-core memory. A penny a bit

But a fast computer runs hot

¨  Power dissipation rises as square of the clock rate
¨  Chips were heading toward melting down!
¨  Multicore: with four

CPUs (cores) on one chip,
even if we run each at half
speed we can perform more
overall computations!

7

Programming a Cluster...
8

• Sometimes you want to write a
program that is executed on
many machines!

• Atlas Cluster (at Cornell):

• 768 cores

• 1536 GB RAM

• 24 TB Storage

• 96 NICs (Network Interface
 Controller)

Many processes are executed
simultaneously on your computer

9

• Operating system provides support for multiple
“processes”

• Usually fewer processors than processes

• Processes are an abstraction:
at hardware level, lots of multitasking

– memory subsystem
– video controller
– buses
– instruction prefetching

Part of Activity Monitor in Gries’s laptop
10

>100 processes are competing for time. Here’s some of them:

Concurrency

¨  Concurrency refers to a single program in which several
processes, called threads, are running simultaneously
¤  Special problems arise
¤  They see the same data and hence can interfere with each

other, e.g. one process modifies a complex structure like a
heap while another is trying to read it

¨  CS2110: we focus on two main issues:
¤  Race conditions
¤ Deadlock

11

Race conditions

¨  A “race condition” arises if two or more processes access the
same variables or objects concurrently and at least one does
updates

¨  Example: Processes t1 and t2 x= x + 1; for some static
global x.

 Process t1 Process t2
 … ...

 x= x + 1; x= x + 1;

But x= x+1; is not an “atomic action”: it takes several steps

12

Race conditions

¨  LOAD x

¨  ADD 1

¨  STORE x

¨  ...
¨  LOAD x

¨  ADD 1

¨  STORE x

Thread t1 Thread t2

13

¨  Suppose x is initially 5

¨  ... after finishing, x = 6! We “lost” an update

Race conditions

¨  Typical race condition: two processes wanting to change a
stack at the same time. Or make conflicting changes to a
database at the same time.

¨  Race conditions are bad news

¤  Race conditions can cause many kinds of bugs, not just the
example we see here!

¤ Common cause for “blue screens”: null pointer exceptions,
damaged data structures

¤ Concurrency makes proving programs correct much harder!

14

Deadlock

¨  To prevent race conditions, one often requires a process to
“acquire” resources before accessing them, and only one
process can “acquire” a given resource at a time.

¨  Examples of resources are:
¤ A file to be read
¤ An object that maintains a stack, a linked list, a hash table,

etc.

¨  But if processes have to acquire two or more resources at the
same time in order to do their work, deadlock can occur. This is
the subject of the next slides.

15

Dining philosopher problem
16

Five philosophers
sitting at a table.

Each repeatedly
does this:
 1. think
 2. eat
What do they eat?
spaghetti.

Need TWO forks
to eat spaghetti!

Dining philosopher problem Each does
repeatedly :
 1. think
 2. eat (2 forks)
eat is then:
 pick up left fork
 pick up right fork
 pick up food, eat
 put down left fork
 put down rght fork

At one point,
they all pick up
their left forks

DEADLOCK!

17

Dining philosopher problem
18

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first
 1. think
 2. eat (2 forks)
eat is then:
 pick up smaller fork
 pick up bigger fork
 pick up food, eat
 put down bigger fork
 put down smallerfork

2

1

4

3

5

Java: What is a Thread?

¨  A separate “execution” that runs within a single program and
can perform a computational task independently and
concurrently with other threads

¨  Many applications do their work in just a single thread: the one
that called main() at startup
¤  But there may still be extra threads...
¤  ... Garbage collection runs in a “background” thread
¤ GUIs have a separate thread that listens for events and
“dispatches” calls to methods to process them

¨  Today: learn to create new threads of our own in Java

19

Thread

¨  A thread is an object that “independently computes”	
¤ Needs to be created, like any object
¤  Then “started” --causes some method to be called. It runs

side by side with other threads in the same program; they
see the same global data

¨  The actual executions could occur on different CPU cores, but
but don’t have to
¤ We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

20

Java class Thread

¨  threads are instances of class Thread
¤ Can create many, but they do consume space & time

¨  The Java Virtual Machine creates the thread that executes
your main method.

¨  Threads have a priority
¤ Higher priority threads are executed preferentially
¤  By default, newly created threads have initial priority equal

to the thread that created it (but priority can be changed)

21

Creating a new Thread (Method 1)
22

class PrimeThread extends Thread {
 long a, b;

 PrimeThread(long a, long b) {
 this.a= a; this.b= b;
 }

 @Override public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeThread p= new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:

Calling p.start() will run it

Do this and
Java invokes run() in new thread

Creating a new Thread (Method 1)
23
class PTd extends Thread {
 long a, b;
 PTd (long a, long b) {
 this.a= a; this.b= b;
 }
 @Override public void run() {
 //compute primes between a, b
 ...
 }
}

PTd p= new PTd (143, 195);
p.start();

… continue doing other stuff …

run()

PTd@20

PTd

getId()
getName

getPriority

a___ b___

Thread
start()
run()
sleep(long)
interrupt
isInterrupted
yield
isAlive Calls start() in

Thread partition

Calls run() to
execute in a
new Thread

and then
returns

method run()
executes in one

thread while
main program
coninues to

execute

Creating a new Thread (Method 2)
24

class PrimeRun implements Runnable {
 long a, b;

 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }

 public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeRun p= new PrimeRun(143, 195);
new Thread(p).start();

Example
25 public class ThreadTest extends Thread {

 int M= 1000; int R= 600;
 public static void main(String[] args) {
 new ThreadTest().start();
 for (int h= 0; true; h= h+1) {
 sleep(M);
 System.out.format("%s %d\n", Thread.currentThread(), h);
 }
 }

 @Override public void run() {
 for (int k= 0; true; k= k+1) {
 sleep(R);
 System.out.format("%s %d\n", Thread.currentThread(), k);
 }
 }

We’ll demo this
with different
values of M and R.
Code will be on
course website

sleep(…) requires
a throws clause
—or else catch it

Example
26 public class ThreadTest extends Thread {

 int M= 1000; int R= 600;
 public static void main(String[] args) {
 new ThreadTest().start();
 for (int h= 0; true; h= h+1) {
 sleep(M);
 …format("%s %d\n", Thread.currentThread(), h);
 }
 }

 @Override public void run() {
 for (int k= 0; true; k= k+1) {
 sleep(R);
 …format("%s %d\n", Thread.currentThread(), k);
 }
 }

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[main,5,main] 1
Thread[Thread-0,5,main] 3
Thread[main,5,main] 2
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[main,5,main] 3
…

Thread name, priority, thread group

Example
27

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
 static boolean ok = true;

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.println("waiting...");
 yield();
 }
 ok = false;
 }

 public void run() {
 while (ok) {
 System.out.println("running...");
 yield();
 }
 System.out.println("done");
 }
}

If threads happen to be sharing
a CPU, yield allows other waiting

threads to run.

Terminating Threads is tricky

¨  Easily done... but only in certain ways
¤  Safe way to terminate a thread: return from method run
¤  Thread throws uncaught exception? whole program will be

halted (but it can take a second or two ...)

¨  Some old APIs have issues: stop(), interrupt(), suspend(),
 destroy(), etc.
¤  Issue: Can easily leave application in a “broken” internal

state.
¤ Many applications have some kind of variable telling the

thread to stop itself.

28

Background (daemon) Threads

¨  In many applications we have a notion of “foreground” and
“background” (daemon) threads
¤  Foreground threads are doing visible work, like interacting

with the user or updating the display
¤  Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc.) A
daemon can continue even when the thread that created it
stops.

¨  On your computer, the same notion of background workers
explains why so many things are always running in the task
manager.

29

Background (daemon) Threads

¨  demon: an evil spirit
¨  daemon. Fernando Corbato, 1963, first to use term. Inspired

by Maxwell’s daemon, an imaginary agent in physics and
thermodynamics that helped to sort molecules.

¨  from the Greek δαίμων. Unix System Administration
Handbook, page 403: … “Daemons have no particular bias
toward good or evil but rather serve to help define a person's
character or personality. The ancient Greeks' concept of a
"personal daemon" was similar to the modern concept of a
"guardian angel"—eudaemonia is the state of being helped or
protected by a kindly spirit. As a rule, UNIX systems seem to
be infested with both daemons and demons.

30

Beginning to think about
avoiding race conditions

31

You know that race conditions can create problems:

Basic idea of race condition: Two different threads access
the same variable in a way that destroys correctness.

¨  Process t1 Process t2

 … ...
 x= x + 1; x= x + 1;

But x= x+1; is not an
“atomic action”: it
takes several step

Two threads may want to use the same stack, or
Hash table, or linked list, or … at the same time.

Synchronization

¨  Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤  Think of it as a kind of lock

n Even if several threads try to acquire the lock at once,
only one can succeed at a time, while others wait

n When it releases the lock, another thread can acquire it
n Can’t predict the order in which contending threads get

the lock but it should be “fair” if priorities are the same

32

 Solution: use with synchronization
33

private Stack<String> stack= new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• Can’t be interrupted by other synchronized blocks
on the same object
• Can run concurrently with non-synchronized code
• Or code synchronized on a different object!

 synchronized block

Synchronization

¨  Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤  Think of it as a kind of lock

n Even if several threads try to acquire the lock at once,
only one can succeed at a time, while others wait

n When it releases the lock, another thread can acquire it
n Can’t predict the order in which contending threads get

the lock but it should be “fair” if priorities are the same

34

Example: a lucky scenario
35

private Stack<String> stack= new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

