
Graphs	- II CS	2110,	Spring	2017

Announcements

1.	Lunch with	instructors:	Still	many	slots	open!
– See	pinned	Piazza	note	@275

2.	Hidden	Figures:	Thursday	at 8:30	and	11:00!
– If	you	haven’t	signed	up	on	the	CMS	schedule	do	
so	now!

– so	far:			 8:30 114/330
11:00 147/330

Announcements

3.	For next	Tuesday’s lecture,	you	MUST watch	the	
tutorial	on	the	shortest	path	algorithm	beforehand:

http://www.cs.cornell.edu/courses/cs2110/2017sp/online/shortest
Path/shortestPath.html
– Tuesday’s	lecture	will	assume that	you	understand	it.	
Watch	the	tutorial	once	or	twice	and	execute	the	
algorithm	on	a	small	graph.

4.	Information	about	Prelim	2 is	now	on	the	Exams	
page	of	the	course	website	and	P2Conflict	will	be	
available	on	the	CMS	today	(Tuesday).

Look,	a	graph!

Look,	a	graph!

Look,	a	graph!

Graph	Algorithms

• Search
– Depth-first	search
– Breadth-first	search

• Shortest	paths
– Dijkstra's	algorithm

• Minimum	spanning	trees
– Prim's	algorithm
– Kruskal's	algorithm

Representations	of	Graphs

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Adjacency	List Adjacency	Matrix

1 2

34

Adjacency	Matrix	or	Adjacency	List?
• Definitions:

– n =	number	of	vertices
– e =	number	of	edges
– d(u) =	degree	of	u =	number	of	edges	leaving	u

• Adjacency	Matrix
– Uses	space	O(n2)
– Can	iterate	over	all	edges	in	time	O(n2)
– Can	answer	“Is	there	an	edge	from	u to	v?” in	O(1) time
– Better	for	dense	graphs	(lots	of	edges)

• Adjacency	List
– Uses	space	O(e + n)
– Can	iterate	over	all	edges	in	time	O(e + n)
– Can	answer	“Is	there	an	edge	from	u to	v?” in	O(d(u)) time
– Better	for	sparse	graphs	(fewer	edges)

1 2 3

1

2

3

Breaking	DAG

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

Graph	1: Graph	2:

Which	of	the	following	two	graphs	are	DAGs?
Directed	Acyclic	Graph

1 2 3

1

2

3

Breaking	DAG

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

1
3

2

1
3

2

Back	to	Important	Things:

Depth-First	Search

• Given	a	graph	and	one	of	its	nodes	u
(say	node	1	below)

1

0

2

5

3

4

6

Depth-First	Search

• Given	a	graph	and	one	of	its	nodes	u
(say	node	1	below)

• We	want	to	“visit”	each	node	reachable	from	u
(nodes	1,	0,	2,	3,	5)

1

0

2

5

3

4

6

There	are	many	paths	
to	some	nodes.

How	do	we	visit	all	
nodes	efficiently,	
without	doing	extra	
work?

Depth-First	Search

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

1

0

2

5

3

4

6

Suppose	all	nodes	
are	unvisited.

Depth-First	Search

1

0

2

5

3

4

6

Suppose	all	nodes	
are	unvisited.

Nodes	REACHABLE*	
from	node	1:
{1,	0,	2,	3,	5}

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

Depth-First	Search

1

0

2

5

3

4

6

Suppose	all	nodes	
are	unvisited.

Nodes	REACHABLE*	
from	node	1:
{1,	0,	2,	3,	5}

Nodes	REACHABLE*	
from	4:	{4,	5,	6}

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

Depth-First	Search

1

0

2

5

3

4

6

Green:	visited
Blue:	unvisited

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

Depth-First	Search

1

0

2

5

3

4

6

Green:	visited
Blue:	unvisited

Nodes	REACHABLE*	
from	node	1:
{1,	0,	5}

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

Depth-First	Search

1

0

2

5

3

4

6

Green:	visited
Blue:	unvisited

Nodes	REACHABLE	*	
from	node	1:
{1,	0,	5}

Nodes	REACHABLE	*	
from	4:	noneNot	even	4 itself,	because	it’s	already	been	visited!

boolean[]	visited;
• Node	u	is	visited	means:	visited[u]	is true
• To	visit	u	means	to:	set	visited[u] to	true
• v is	REACHABLE* from	u if	there	is	a	path	(u,	…,	v)

*in	which	all	nodes	of	the	path	are	unvisited.

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

}

1

0

2

5

3

4

6

1

0

2

5

3

4

6

Start End

Let	u	be	1

The	nodes	
REACHABLE* from	1	
are	1,	0,	2,	3,	5

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

}

1

0

2

5

3

4

6

Let	u	be	1

The	nodes	
REACHABLE*	from	1	
are	1,	0,	2,	3,	5

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;

}

1

0

2

5

3

4

6

Let	u	be	1

The	nodes	
REACHABLE*	from	1	
are	1,	0,	2,	3,	5

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;

}

1

0

2

5

3

4

6

Let	u	be	1 (visited)

The	nodes	to	be	
visited	are	0,	2,	3,	5

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Let	u	be	1 (visited)

The	nodes	to	be	
visited	are	0,	2,	3,	5

Have	to	do	DFS	on	
all	unvisited	
neighbors	of	u!

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1	…

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0	…

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2	…

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2,	3	…

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	the	for
loop	visits	
neighbors	in	
numerical	order.	
Then	dfs(1) visits	
the	nodes	in	this	
order:	1,	0,	2,	3,	5

1

0

2

5

3

4

6

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Suppose	n nodes	are	REACHABLE*	along	e
edges	(in	total).	What	is
• Worst-case	runtime?		O(n+e)
• Worst-case	space?						O(n)

Depth-First	Search
/**	Visit	all	nodes	that	are	REACHABLE*	
from	u.	Precondition:	u	is	unvisited.	*/
public	static	void	dfs(int u)	{

visited[u]	=	true;
for	all	edges	(u,	v)	leaving	u:

if	v	is	unvisited	then	dfs(v);
}

Example:	Use	different	way	(other	than	array	
visited)	to	know	whether	a	node	has	been	visited

Example:	We	really	haven’t	said	what	data	
structures	are	used	to	implement	the	graph

That’s	all	there	is	to	
basic	DFS.	You	may	
have	to	change	it	to	
fit	a	particular	
situation.

If	you	don’t	have	
this	spec	and	you	
do	something	
different,	it’s	
probably	wrong.

Depth-First	Search	in	OO	fashion
public class Node	{

boolean visited;
List<Node>	neighbors;

/**	Visit	all	nodes	that	are	REACHABLE*
*	from	u.	Precondition:	u	is	unvisited	*/

public void dfs()	{
visited=	true;	
for (Node	n:	neighbors)	{

if	(!n.visited)	n.dfs();
}

}
}	

Each	node	of	the	
graph	is	an	object	
of	type	Node

No	need	for	a	
parameter.	The	
object	is	the	node.

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);				//	Not	Java!
//	inv:	all	nodes	that	have	to	be	visited	are
//									REACHABLE*	from	some	node	in	s
while ()	{

u=	s.pop();			 //	Remove	top	stack	node,	put	in	u
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
}

s	is	not	empty

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1)

Stack	s
1

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	0

Stack	s
1

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	0

Stack	s

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	0

Stack	s

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.		*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	0

Stack	s

0
2
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	1

Stack	s

0
2
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	1

Stack	s

2
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	1

Stack	s

2
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	2

Stack	s

2
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	2

Stack	s
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	2

Stack	s
5

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
} 1

0

2

5

3

4

6

Call	dfs(1) Iteration	2

Stack	s

3
5
5

Yes,	5	is	put	on	the	
stack	twice,	once	for	
each	edge	to	it.	It	will	
be	visited	only	once.

Depth-First	Search	written	iteratively
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);
while (s	is	not	empty)	{

u=	s.pop();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
}

That’s	DFS!
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);				//	Not	Java!
//	inv:	all	nodes	that	have	to	be	visited	are
//									REACHABLE*	from	some	node	in	s
while ()	{

u=	s.pop();			 //	Remove	top	stack	node,	put	in	u
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
}

s	is	not	empty

Want	to	see	a	magic	trick?

Depth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void dfs(int	u)	{

Stack	s=	(u);				//	Not	Java!
//	inv:	all	nodes	that	have	to	be	visited	are
//									REACHABLE*	from	some	node	in	s
while ()	{

u=	s.pop();			 //	Remove	top	stack	node,	put	in	u
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

s.push(v);
}

}
}

s	is	not	empty

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int u)	{

Queue	q=	(u);				//	Not	Java!
//	inv:	all	nodes	that	have	to	be	visited	are
//									REACHABLE*	from	some	node	in	s
while ()	{

u=	q.popFirst();			 //	Remove	first	node	in	queue,	put	in	u
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);				//	Add	to	end	of	queue
}

}
}

q is	not	empty

/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int u)	{

Queue	q=	(u);				//	Not	Java!
//	inv:	all	nodes	that	have	to	be	visited	are
//									REACHABLE*	from	some	node	in	s
while ()	{

u=	q.popFirst();			 //	Remove	first	node	in	queue,	put	in	u
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);				//	Add	to	end	of	queue
}

}
}

Breadth-First	Search

q is	not	empty

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
1

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
1

Iteration	0

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q

Iteration	0

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q

Iteration	0

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
0	2

Iteration	0

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
0	2

Iteration	1

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
2

Iteration	1

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
2

Iteration	1

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
2	7

Iteration	1

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
2	7

Iteration	2

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
7

Iteration	2

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
7

Iteration	2

7

Breadth-First	Search
/**	Visit	all	nodes	REACHABLE*	from	u.	Pre:	u	is	unvisited.	*/
public	static	void bfs(int	u)	{

Queue	q=	(u);
while q is	not	empty)	{

u=	q.popFirst();
if (u	has	not	been	visited)	{

visit	u;
for	each	edge	(u,	v)	leaving	u:

q.append(v);
}

}
} 1

0

2

5

3

4

6

Call	bfs(1)

Queue	q
7	3	5

Iteration	2

Breadth	first:
(1) Node	u
(2) All	nodes	1	edge	from	u
(3) All	nodes	2	edges	from	u
(4) All	nodes	3	edges	from	u
…

7

Some	food	for	thought:

• BFS(root)	on	a	tree	corresponds	to	which	tree	
traversal?

• Write	out	the	order	nodes	are	visited	in	this	
undirected	graph,	when	calling:
– BFS(5)
– DFS(5)
– DFS(0)

1

0

2

5

3

4

6

(if	there	are	ties,	visit	the	lower	#	first)

