

These aren't the graphs we're interested in

This carries Internet traffic across the oceans

An older social graph

This is a graph(ical model) that has learned to recognize cats

Applications of Graphs

- Communication networks
- Social networks
- Routing and shortest path problems
- Commodity distribution (network flow)
- Traffic control
- Resource allocation
- Numerical linear algebra (sparse matrices)
- Geometric modeling (meshes, topology, ...)
- Image processing (e.g. graph cuts)
- Computer animation (e.g. motion graphs)
- Systems biology
- Digital humanities (e.g. Republic of Letters)
- ...

Directed graphs

- A directed graph (digraph) is a pair (V, E) where
- V is a (finite) set
- E is a set of ordered pairs (u, v) where $u, v \in V$
- Often require $u \neq v$ (i.e. no self-loops)
- An element of V is called a vertex or node
- An element of E is called an edge or arc
- | $\mid=$ = size of V, often denoted by n
- $|E|=$ size of E, often denoted by m

$V=\{A, B, C, D, E\}$ $\boldsymbol{E}=\{(A, C),(B, A),(B, C)$, $(C, D),(D, C)\}$ $|\boldsymbol{V}|=5$ $|E|=5$

Undirected Graphs

- An undirected graph is just like a directed graph!
- ... except that E is now a set of unordered pairs $\{u, v\}$ where $u, v \in V$
- Every undirected graph can be easily converted to an equivalent directed graph via a simple transformation
- Replace every undirected edge with two directed edges in opposite directions
- ... but not vice versa

Graph terminology

- Vertices u and v are called
- the source and sink of the directed edge (u, v), respectively
- the endpoints of (u, v) or $\{u, v\}$
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

More graph terminology

- A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that for $0 \leq i<p$,
$-\left(v_{i}, v_{i+1}\right) \in E$ if the graph is directed
- $\left\{v_{i}, v_{i+1}\right\} \in E$ if the graph is undirected
- The length of a path is its number of edges
- A path is simple if it doesn't repeat any vertices

- A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a DAG

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Topological sort

- We just computed a topological sort of the DAG
- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices - Useful in job scheduling with precedence constraints

Graph coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

Graph coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

An application of coloring

- Vertices are tasks
- Edge (u, v) is present if tasks u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the tasks
- Minimum number of colors needed to color the graph = minimum number of time slots required

Planarity

- A graph is planar if it can be drawn in the plane without any edges crossing

- Is this graph planar?
- Yes!

Detecting Planarity

Kuratowski's Theorem:

- A graph is planar if and only if it does not contain a copy of K_{5} or $K_{3,3}$ (possibly with other nodes along the edges shown)

Detecting Planarity

In the early 1970 's, Cornell Prof John Hopcroft spent a sabbatical at Stanford and worked with PhD student Bob Tarjan. They developed the first linear-time algorithm for testing whether a graph was planar. They later received the ACM Turing Award for their work on algorithms.
Tarjan was hired at one point in the 1970's into our department, but the Ithaca weather was too depressing for him and he left for Princeton.

Coloring a graph:

How many colors are needed to color the countries so that no two adjacent countries have the same color?
Question asked as early as 1852
1879. Kemp publishes a theorem that only 4 colors are needed!
1880. Julius Peterson finds a flaw in the Kemp's proof!

Four-Color Theorem:

Every planar graph is 4-colorable [Appel \& Haken, 1976]
The proof rested on checking that 1,936 special graphs had a certain property.
They used a computer to check that those 1, 936 graphs had that property
Basically the first time a computer was needed to check something. Caused a ot of controversy.

Gries looked at their computer program, a recursive program written in the assembly language of the IBM 7090 computer, and found an error, which was safe (it said something didn't have the property when it did) and could be fixed. Others did the same.

Since then, there have been improvements. And a formal proof has even been done in the Coq proof system

Some abstract graphs

Bipartite graphs

- A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that no edge connects two vertices in the same set
- The following are equivalent
- G is bipartite
- G is 2 -colorable
- G has no cycles of odd length

Adjacency matrix or adjacency List?
$-n=$ number of vertice
1234
$-d(u)=$ degree of $u=$ no. of edges leaving u

- Adjacency Matrix 30000
- Uses space $\mathrm{O}\left(n^{2}\right) \quad 401110$
- Enumerate all edges in time $\mathrm{O}\left(n^{2}\right)$
- Answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time
- Better for dense graphs (lots of edges)

Adjacency matrix or adjacency list?
$-n=$ number of vertices
$-e=$ number of edges

- $d(u)=$ degree of $u=$ no. edges leaving u
- Adjacency List

- Enumerate all edges in time $\mathrm{O}(e+n)$
- Answer "Is there an edge from u to v ?" in $\mathrm{O}(d(u))$ time
- Better for sparse graphs (fewer edges)

Graph algorithms

- Search
- Depth-first search
- Breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Jarnik/Prim/Dijkstra algorithm
- Kruskal's algorithm

