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Graphs	-	I	 CS	2110,	Spring	2017	
Leonhard 
Euler. 1736 
7 Bridges of 
Konigsberg 

These	aren’t	the	graphs	we’re	interested	in	

This	is	

V.J.	Wedeen	and	L.L.	Wald,	MarAnos	Center	for	Biomedical	Imaging	at	MGH	

And	so	is	this	

This	carries	Internet	traffic	across	the	oceans	 An	older	social	graph	
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An	older	social	graph	

Voltaire	and	Benjamin	Franklin	

A	ficAonal	social	graph	

A	transport	graph:	NY	subway	system	 Another	transport	graph	

A	circuit	graph	(flip-flop)	 A	circuit	graph	(Intel	4004)	
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This	is	not	a	graph,	this	is	a	cat	 This	is	a	graph(ical	model)	that		
has	learned	to	recognize	cats	

Some	abstract	graphs	

K5 

K3,3 

ApplicaAons	of	Graphs	
•  CommunicaAon	networks	
•  Social	networks	
•  RouAng	and	shortest	path	problems	
•  Commodity	distribuAon	(network	flow)	
•  Traffic	control	
•  Resource	allocaAon	
•  Numerical	linear	algebra	(sparse	matrices)	
•  Geometric	modeling	(meshes,	topology,	…)	
•  Image	processing	(e.g.	graph	cuts)	
•  Computer	animaAon	(e.g.	moAon	graphs)	
•  Systems	biology	
•  Digital	humaniAes	(e.g.	Republic	of	Le\ers)	
•  …	

Directed	graphs	

•  A	directed	graph	(digraph)	is	a	pair	(V, E)	
where	
–  V	is	a	(finite)	set	
–  E	is	a	set	of	ordered	pairs	(u, v)	where	u,v ∈ V 

•  O^en	require	u ≠ v (i.e.	no	self-loops)	

•  An	element	of	V	is	called	a	vertex	or	node	
•  An	element	of	E	is	called	an	edge	or	arc	

•  |V|	=	size	of	V,	o^en	denoted	by	n 
•  |E|	=	size	of	E,	o^en	denoted	by	m	

A	

B	 C	

D	
E	

V = {A, B, C, D, E} 
E = {(A,C), (B,A), (B,C),  

  (C,D), (D,C)} 
|V| = 5 
|E| = 5 

Undirected	Graphs	

•  An	undirected	graph	is	just	like	a	directed	
graph!	
– …	except	that	E	is	now	a	set	of	unordered	

pairs	{u, v}	where	u,v ∈ V 

•  Every	undirected	graph	can	be	easily	
converted	to	an	equivalent	directed	
graph	via	a	simple	transformaAon:	
–  Replace	every	undirected	edge	with	two	
directed	edges	in	opposite	direcAons	

•  …	but	not	vice	versa	

A	

B	 C	

D	
E	

V = {A, B, C, D, E} 
E = {{A,C}, {B,A}, 

  {B,C}, {C,D}} 
|V| = 5 
|E| = 4 
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Graph	terminology	

•  VerAces	u	and	v	are	called	
–  the	source	and	sink	of	the	directed	edge	(u, v),	
respecAvely	

–  the	endpoints	of	(u, v) or {u, v}	
•  Two	verAces	are	adjacent	if	they	are	

connected	by	an	edge	
•  The	outdegree	of	a	vertex	u	in	a	directed	

graph	is	the	number	of	edges	for	which	u	is	
the	source	

•  The	indegree	of	a	vertex	v	in	a	directed	graph	
is	the	number	of	edges	for	which	v	is	the	sink	

•  The	degree	of	a	vertex	u	in	an	undirected	
graph	is	the	number	of	edges	of	which	u	is	an	
endpoint	

A

B C

DE

A

B C

DE

More	graph	terminology	

•  A	path	is	a	sequence	v0,v1,v2,...,vp	of	verAces	
such	that	for	0 ≤ i < p,	
–  (vi, vi+1)∈E	if	the	graph	is	directed 
–  {vi, vi+1}∈E	if	the	graph	is	undirected 

•  The	length	of	a	path	is	its	number	of	edges		
•  A	path	is	simple	if	it	doesn’t	repeat	any	verAces	
•  A	cycle	is	a	path	v0, v1, v2, ..., vp such	that	v0 = vp 

•  A	cycle	is	simple	if	it	does	not	repeat	any	
verAces	except	the	first	and	last	

•  A	graph	is	acyclic	if	it	has	no	cycles	
•  A	directed	acyclic	graph	is	called	a	DAG	

A

B C

DE

A

B C

DE

DAG	

Not	a	DAG	

Path	
A,C,D	

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

A

B

C

D

E

F

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

B

C

D

E

F

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

C

D

E

F

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

D

E

F
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Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

E

F

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

F

Is	this	a	DAG?	

•  IntuiAon:		
–  If	it’s	a	DAG,	there	must	be	a	vertex	with	indegree	zero	

•  This	idea	leads	to	an	algorithm	
– A	digraph	is	a	DAG	if	and	only	if	we	can	iteraAvely	delete	
indegree-0	verAces	unAl	the	graph	disappears	

YES!	

Topological	sort	

•  We	just	computed	a	topological	sort	of	the	DAG	
– This	is	a	numbering	of	the	verAces	such	that	all	
edges	go	from	lower-	to	higher-numbered	verAces	

– Useful	in	job	scheduling	with	precedence	constraints	

1

2

3

4

5

6

Graph	coloring	

•  A	coloring	of	an	undirected	graph	is	an	assignment	
of	a	color	to	each	node	such	that	no	two	adjacent	
verAces	get	the	same	color	

	
	
	

•  How	many	colors	are	needed	to	color	this	graph?	

A

B

C

D

E

F

Graph	coloring	

•  A	coloring	of	an	undirected	graph	is	an	
assignment	of	a	color	to	each	node	such	that	no	
two	adjacent	verAces	get	the	same	color	

	
	
	

•  How	many	colors	are	needed	to	color	this	graph?	

A

B

C

D

E

F
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An	applicaAon	of	coloring	

•  VerAces	are	tasks	
•  Edge	(u, v)	is	present	if	tasks	u	and	v	each	require	access	to	

the	same	shared	resource,	and	thus	cannot	execute	
simultaneously	

•  Colors	are	9me	slots	to	schedule	the	tasks	
•  Minimum	number	of	colors	needed	to	color	the	graph	=	

minimum	number	of	Ame	slots	required	

A	

B	

C	

D	

E	
F	

Planarity	

•  A	graph	is	planar	if	it	can	be	drawn	in	the	plane	without	any	
edges	crossing	

	
	
	
	
	

	
•  Is	this	graph	planar?	

A

B

C

D

E

F

Planarity	

•  A	graph	is	planar	if	it	can	be	drawn	in	the	plane	
without	any	edges	crossing	

	
	
	
	

	
•  Is	this	graph	planar?	

– Yes!	

A

B

C

D

E

F

Planarity	

•  A	graph	is	planar	if	it	can	be	drawn	in	the	
plane	without	any	edges	crossing	

	
	
	

	
•  Is	this	graph	planar?	

– Yes!	

A

B

C

D

E

F

DetecAng	Planarity	

Kuratowski's	Theorem:	

	

•  A	graph	is	planar	if	and	only	if	it	does	not	contain	
a	copy	of	K5	or	K3,3	(possibly	with	other	nodes	
along	the	edges	shown)	

K5 K3,3 

DetecAng	Planarity	
In the early 1970’s, Cornell Prof John Hopcroft spent a sabbatical 
at Stanford and worked with PhD student Bob Tarjan. They 
developed the first linear-time algorithm for testing whether a 
graph was planar. They later received the ACM Turing Award for 
their work on algorithms. 

Tarjan was hired at one point in the 1970’s into our department, 
but the Ithaca weather was too depressing for him and he left for 
Princeton. 
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Coloring a graph: 
How many colors are 
needed to color the 
countries so that no two 
adjacent countries have the 
same color? 
Question asked as early as 
1852. 

1879. Kemp publishes a 
theorem that only 4 colors 
are needed! 

1880. Julius Peterson finds a 
flaw in the Kemp’s proof!  

Four-Color	Theorem:	
Every	planar	graph	is	4-colorable	[Appel	&	Haken,	1976]	
The	proof	rested	on	checking	that	1,936	special	graphs	had	a	certain	property.	

They	used	a	computer	to	check	that	those	1,	936	graphs	had	that	property!	

Basically	the	first	Ame	a	computer	was	needed	to	check	something.	Caused	a	
lot	of	controversy.	

Gries	looked	at	their	computer	program,	a	recursive	program	wri\en	in	the	
assembly	language	of	the	IBM	7090	computer,	and	found	an	error,	which	was	
safe	(it	said	something	didn’t	have	the	property	when	it	did)	and	could	be	
fixed.	Others	did	the	same.	

	

Since	then,	there	have	been	improvements.	And	a	formal	proof	has	even	been	
done	in	the	Coq	proof	system		

Another	4-colored	planar	graph	

h\p://www.cs.cmu.edu/~bryant/boolean/maps.html	

BiparAte	graphs	

•  A	directed	or	undirected	graph	is	biparAte	if	the	verAces	can	
be	parAAoned	into	two	sets	such	that	no	edge	connects	two	
verAces	in	the	same	set	
	

•  The	following	are	equivalent	
–  G	is	biparAte	
–  G	is	2-colorable	
–  G	has	no	cycles	of	odd	length	

	

1

2

3

A

B

C

D

Some	abstract	graphs	

K5 

K3,3 

= 

Traveling	salesperson	

Find	a	path	of	minimum	distance	that	visits	every	city		

Amsterdam 

Rome 

Boston 

Atlanta 

London 
Paris 

Copenhagen 

Munich 

Ithaca 

New York 

Washington 

1202 
1380 

1214 

1322 

1356 

1002 

512 
216 

441 

189 
160 

1556 1323 

419 

210 

224 132 

660 505 

1078 
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RepresentaAons	of	graphs	

2 3 

2 4 

3 

1 

2 

3 

4 

Adjacency	List	 Adjacency	Matrix	

1 2 

3 4 

				1		2			3			4	
1	
2	
3	
4	

0			1			0			1	
0			0			1			0	
0			0			0			0	
0			1			1			0	

Adjacency	matrix	or	adjacency	List?	
–  n	=	number	of	verAces	
–  m	=	number	of	edges	
–  d(u)	=	degree	of	u	=	no.	of	edges	leaving	u 

•  Adjacency	Matrix	
–  Uses	space	O(n2) 
–  Enumerate	all	edges	in	Ame	O(n2)	
–  Answer	“Is	there	an	edge	from	u	to	v?”	in	O(1)	Ame	
–  Be\er	for	dense	graphs	(lots	of	edges)	

				1		2			3			4	
1	
2	
3	
4	

0			1			0			1	
0			0			1			0	
0			0			0			0	
0			1			1			0	

–  n	=	number	of	verAces	
–  e	=	number	of	edges	
–  d(u)	=	degree	of	u	=	no.	edges	leaving	u 

•  Adjacency	List	
–  Uses	space	O(e + n)	
–  Enumerate	all	edges	in	Ame	O(e + n)	
–  Answer	“Is	there	an	edge	from	u	to	v?”	in	O(d(u))	Ame	
–  Be\er	for	sparse	graphs	(fewer	edges)	

2 3 

2 4 

3 

1 

2 

3 

4 

Adjacency	matrix	or	adjacency	list?	 Graph	algorithms	

•  Search	
–  Depth-first	search	
–  Breadth-first	search	

•  Shortest	paths	
–  Dijkstra's	algorithm	

•  Minimum	spanning	trees	
–  Jarnik/Prim/Dijkstra	algorithm	
–  Kruskal's	algorithm	


