

Announcements

- □ Next week's section: make your BugTrees hashable.
- □ Watch the tutorial videos on hashing:
 - http://www.cs.cornell.edu/courses/cs2110/2017sp/online/hashing/01hashing.html
 - □ Also linked from Recitation 07 on Lecture Notes page
 - As usual, watch videos BEFORE recitation so you can complete the assignment DURING recitation.

This lecture has a plot twist! See if you can spot it coming.

Readings and Homework

Read Chapter 26 "A Heap Implementation" to learn about heaps

Exercise: Salespeople often make matrices that show all the great features of their product that the competitor's product lacks. Try this

for a heap versus a BST. First, try and sell someone on a BST: List some desirable properties of a BST that a heap lacks. Now be the heap salesperson: List some good things about heaps that a BST lacks. Can you think of situations where you would favor one over the other?

With ZipUltra heaps, you've got it made in the shade my friend!

Abstract vs concrete data structures

- Abstract data structures are interfaces
 - they specify only interface (method names and specs)
 - □ not **implementation** (method bodies, fields, ...)
 - Abstract data structures can have multiple possible implementations.

Abstract vs concrete data structures

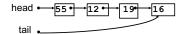
- □ interface List defines an "abstract data type".
- □ It has methods: add, get, remove, ...
- □ Various **classes** implement List:

Class:	ArrayList	LinkedList
Backing storage:	array	chained nodes
add(i, val)	O(n)	O(n)
add(0, val)	O(n)	O(1)
add(n, val)	O(1)	O(1)
get(i)	O(1)	O(n)
get(0)	O(1)	O(1)
get(n)	O(1)	O(1)

Stacks and queues are restricted lists

- Stack (LIFO) implemented using a List
- allows only add(0,val), remove(0) (push, pop)
- Queue (FIFO) implemented using a List
- allows only add (n, val), remove (0) (enqueue, dequeue)
- These operations are O(1) in a LinkedList (not true in ArrayList)

Both efficiently implementable using a singly linked list with head and tail



Interface Bag (not In Java Collections)

interface Bag<E> implements Iterable { void add(E obj); boolean contains(E obj); boolean remove(E obj); int size(); boolean isEmpty(); Iterator<E> iterator()

Also called multiset

Like a set except that a value can be in it more than once. Example: a bag of coins

Refinements of Bag: Stack, Queue, PriorityQueue

Priority queue

- Bag in which data items are Comparable
- Smaller elements (determined by compareTo()) have higher
- remove () return the element with the highest priority = least element in the compareTo() ordering
- · break ties arbitrarily

Many uses of priority queues (& heaps)

Surface simplification [Garland and Heckbert 1997]

- □ Event-driven simulation: customers in a line
- □ Collision detection: "next time of contact" for colliding bodies
- □ Graph searching: Dijkstra's algorithm, Prim's algorithm
- □ Al Path Planning: A* search
- □ Statistics: maintain largest M values in a sequence
- Operating systems: load balancing, interrupt handling
- Discrete optimization: bin packing, scheduling
- College: prioritizing assignments for multiple classes.

java.util.PriorityQueue<E>

```
interface PriorityQueue<E> {
                                            TIME
 boolean add(E e) \{...\} //insert e.
                                            log
 void clear() {...} //remove all elems.
 E peek() {...} //return min elem.
                                            constant
 E poll() {...} //remove/return min elem.
                                            log
 boolean contains(E e)
                                            linear
 boolean remove(E e)
                                            linear
 int size() {...}
                                            constant
 Iterator<E> iterator()
                               IF implemented with a heap!
```

Priority queues as lists

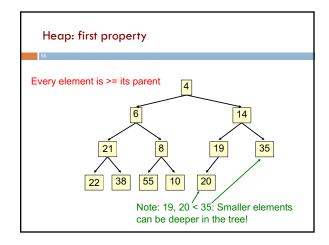
· Maintain as unordered list

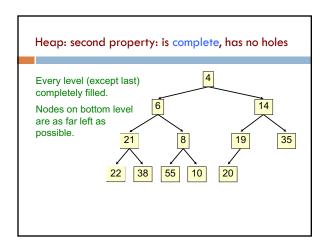
- -add()
- put new element at front O(1) - poll() must search the list – O(n)
- peek() must search the list – O(n)
- · Maintain as ordered list
- must search the list O(n) - add()
- poll() min element at front - O(1)
- peek() 0(1)

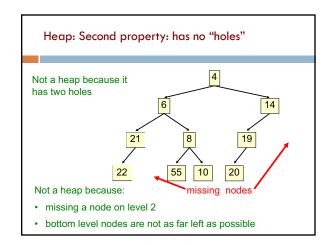
Can we do better?

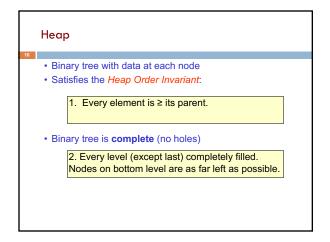
Heap: binary tree with certain properties

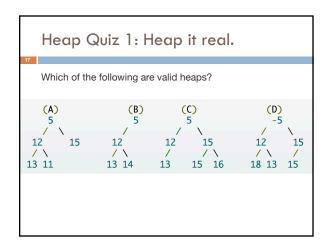
- A heap is a concrete data structure that can be used to implement priority queues
- · Gives better complexity than either ordered or unordered list implementation:
 - add(): O(log n) (n is the size of the heap) -poll(): O(log n)
- O(n log n) to process n elements
- Do not confuse with *heap memory*, where the Java virtual machine allocates space for objects – different usage of the word heap

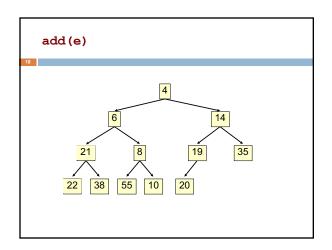


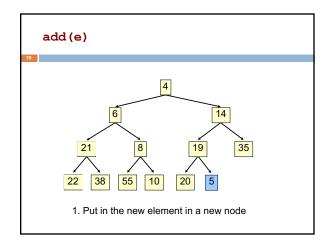


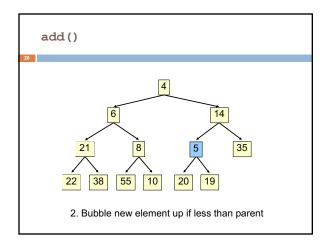


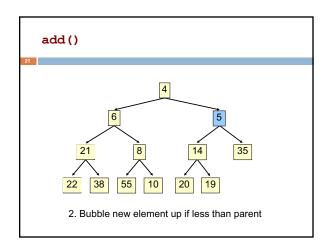


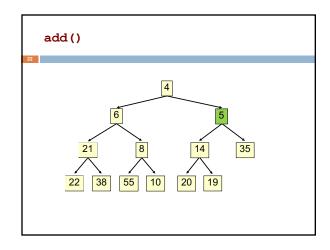


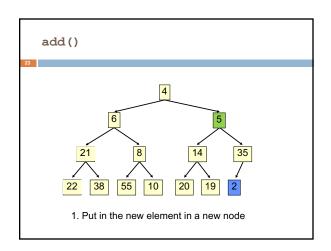


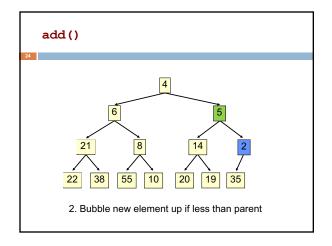


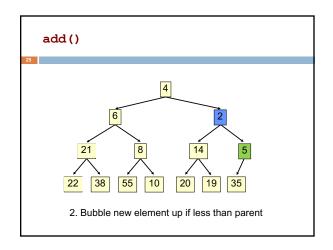


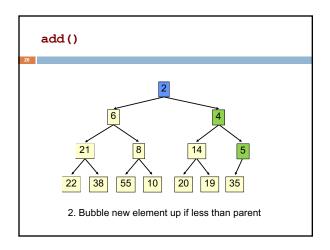


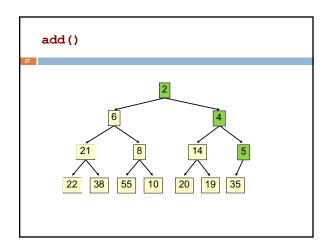


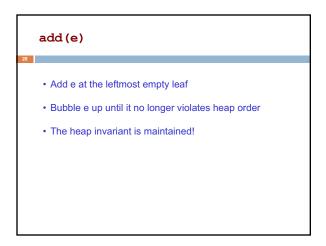








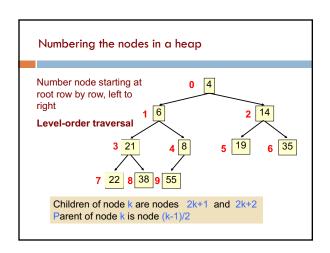


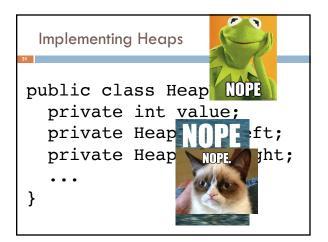


• Time is O(log n), since the tree is balanced

- size of tree is exponential as a function of depth

- depth of tree is logarithmic as a function of size





```
public class HeapNode {
   private int[] heap;
   ...
}
```

```
Store a heap in an array (or ArrayList) b!

• Heap nodes in b in order, going across each level from left to right, top to bottom
• Children of b[k] are b[2k + 1] and b[2k + 2]
• Parent of b[k] is b[(k - 1)/2]

to parent

0 1 2 3 5 6 7 8 9

Tree structure is implicit.
No need for explicit links!
```

```
add() --assuming there is space

/** An instance of a heap */
class Heap<E> {
    E[] b= new E[50]; // heap is b[0..n-1]
    int n= 0; // heap invariant is true

/** Add e to the heap */
public void add(E e) {
    b[n]= e;
    n= n + 1;
    bubbleUp(n - 1); // given on next slide
    }
}
```

```
class Heap<E> {
    /** Bubble element #k up to its position.
    * Pre: heap inv holds except maybe for k */
    private void bubbleUp(int k) {
      int p= (k-1)/2;
      // inv: p is parent of k and every elmnt
      // except perhaps k is >= its parent
      while (k > 0 && b[k].compareTo(b[p]) < 0) {
         swap(b[k], b[p]);
      k = p;
      p = (k-1)/2;
    }
}</pre>
```

```
Heap Quiz 2: Pile it on!

Here's a heap, stored in an array:

[1 5 7 6 7 10]

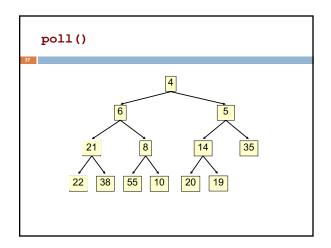
Write the array after execution of add(4)? Assume the existing array is large enough to store the additional element.

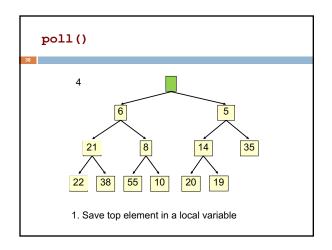
A. [1 5 7 6 7 10 4]

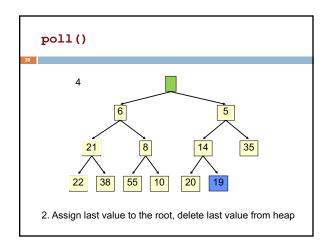
B. [1 4 5 6 7 10 7]

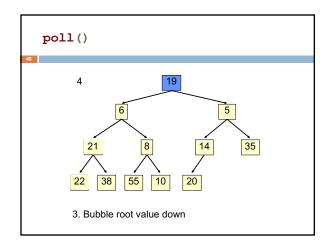
C. [1 5 4 6 7 10 7]

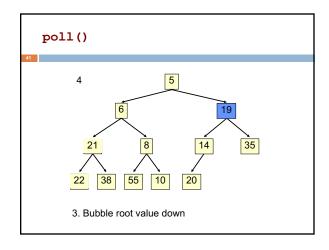
D. [1 4 56 7 6 7 10]
```

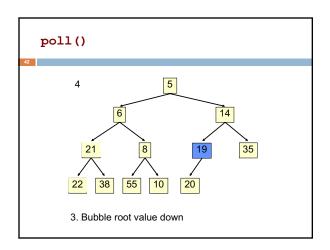


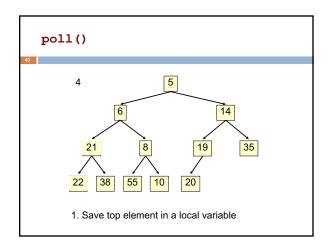


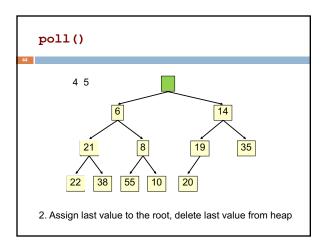


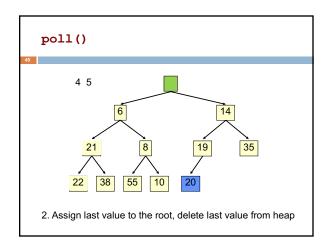


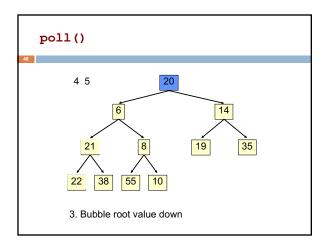


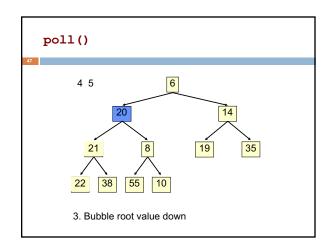


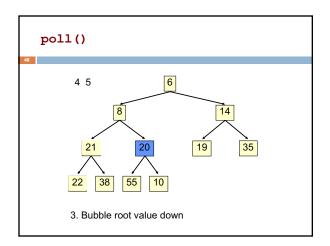


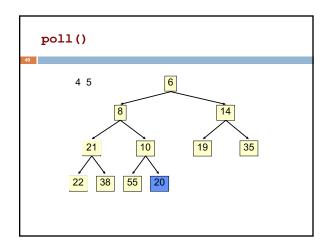


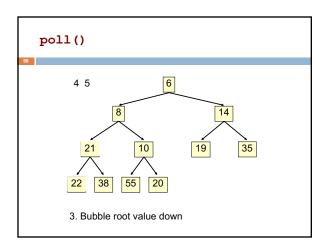












poll()

_

}

- · Save the least element (the root)
- · Assign last element of the heap to the root.
- · Remove last element of the heap.
- Bubble element down –always with smaller child, until heap invariant is true again.

The heap invariant is maintained!

• Return the saved element

c's smaller child

Time is O(log n), since the tree is balanced

poll(). Remember, heap is in b[0..n-1]

```
/** Remove and return the smallest element
  * (return null if list is empty) */
public E poll() {
    if (n == 0) return null;
    E v= b[0]; // smallest value at root.
    n= n - 1; // move last
    b[0]= b[n]; // element to root
    bubbleDown(0);
    return v;
}
```

```
/** Tree has n node.

* Return index of smaller child of node k

(2k+2 if k >= n) */

public int smallerChild(int k, int n) {

int c= 2*k + 2;  // k's right child

if (c >= n || b[c-1].compareTo(b[c]) < 0)

c= c-1;

return c;
```

```
/** Bubble root down to its heap position.
Pre: b[0..n-1] is a heap except maybe b[0] */
private void bubbleDown() {
   int k= 0;
   int c= smallerChild(k, n);
   // inv: b[0..n-1] is a heap except maybe b[k] AND
   // b[c] is b[k]'s smallest child
   while ( c < n && b[k].compareTo(b[c]) > 0) {
      swap(b[k], b[c]);
      k= c;
      c= smallerChild(k, n);
   }
}
```

Change heap behaviour a bit

Separate priority from value and do this:

add(e, p); //add element e with priority p (a double)

THIS IS EASY!

Be able to change priority

change(e, p); //change priority of e to p

THIS IS HARD!

Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A6: implement this heap! Use a second data structure to make change-priority expected log n time

HeapSort(b, n) —Sort b[0..n-1]

Whet your appetite –use heap to get exactly n log n in-place sorting algorithm. 2 steps, each is O(n log n)

- 1. Make b[0..n-1] into a max-heap (in place)
- for (k= n-1; k > 0; k= k-1) {
 b[k]= poll –i.e. take max element out of heap.
 }

This algorithm is on course website

A max-heap has max value at root