
3/6/17 

1 

 
SORTING 

Lecture 11 
CS2110 – Spring 2017 

1 

Insertion sort 
Selection sort 
Quicksort 
Mergesort 
And their asymptotic time complexity 

See lecture notes page, row in table for this lecture, 
for file        searchSortAlgorithms.zip 

A3 and Prelim 

¨  379/607 (62%) people got 65/65 for correctness on A3 
¨  558/607  (92%) got at least 60/65 for correctness on A3 

¨  Prelim: Next Tuesday evening, March 14 
    Read the Exams page on course website to determine when 
    you take the prelim (5:30 or 7:30) and what to do if you 
    have a conflict.  
¨  If necessary, complete CMS assignment P1Conflict by the end 

of Wednesday (tomorrow). 
¨  So far, only 15 people filled it out! 

2 

InsertionSort 

3 

A loop that processes 
elements of an array 

in increasing order 
has this invariant 

inv: b 
0                  i             b.length 
 processed        ?                                         

pre: b 
0               b.length 
       ?     post: b 

0                     b.length 
     sorted                                 

inv: 

 or:       b[0..i-1] is sorted 

b 
0               i               b.length 

   sorted           ?                                         

for (int i= 0; i < b.length; i= i+1) { maintain invariant } 
 

Each iteration, i= i+1; How to keep inv true? 

4 

inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] down to its shortest position in b[0..i] 

b 
0                             i                               b.length 
 2   3   5   5   5    7     ?                                         

Will take time proportional to the number of swaps needed 

5 5 

inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] to its 
sorted position 
in b[0..i], then 
increase i 

b 
0                              i                              b.length 
 2   3   5   5   5   7              ?                                         

What to do in each iteration? 

 2   5   5   5   3    7     ?                                         

 2   5   5   3   5    7     ?                                         

 2   5   3   5   5    7     ?                                         

 2   3   5   5   5    7     ?                                         

Loop 
body 

(inv true 
before 

and after) 

InsertionSort 
6 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted 

  position in b[0..i] 
} 

Many people sort cards this way 
Works well when input is nearly 
sorted 

Note English statement 
in body. 

Abstraction. Says what 
to do, not how. 

 
This is the best way to 

present it. We expect 
you to present it this 

way when asked. 
 

Later, can show how to 
implement that with an 

inner loop 



3/6/17 

2 

Push b[i] down … 
7 

// Q: b[0..i-1] is sorted 
// Push b[i] down to its sorted position in b[0..i] 
 
 
 
 
 
// R: b[0..i] is sorted  
 
invariant P:  b[0..i] is sorted 
except that b[k] may be < b[k-1] 

while (k > 0  &&  b[k] < b[k-1]) { 
 
 
} 

start? 
stop? 

progress? 

k= k–1; 
maintain 
invariant? 

Swap b[k] and b[k-1] 

int k= i; 

 2   5   3   5   5    7     ?                                         
i k 

example 

How to write nested loops 
8 

while (k > 0  &&  b[k] < b[k-1]) { 
 
}  

k= k–1; 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted 

      position in b[0..i] 
} 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    //Push b[i] down to its sorted 

  //position in b[0..i] 
    int k= i; 
    while (k > 0  &&  b[k] < b[k-1]) { 
          swap b[k] and b[k-1]; 
          k= k-1; 
     } 
} 

Present algorithm like this 

If you are going to show 
implementation, put in “WHAT 
IT DOES” as a comment 

InsertionSort 
9 

� Worst-case: O(n2) 
   (reverse-sorted input) 

� Best-case: O(n) 
  (sorted input) 

� Expected case: O(n2) 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Pushing b[i] down can take i swaps. 
Worst case takes  
     1  + 2  +  3  +  …  n-1   =   (n-1)*n/2 
Swaps. 

Let n = b.length 

SelectionSort 

10 

pre: b 
0                 b.length 
       ?                                 post: b 

0                 b.length 
  sorted                                 

inv: b 
0                              i                       b.length 
  sorted                                                              , <= b[i..]      >= b[0..i-1] Additional term 

in invariant 

Keep invariant true while making progress? 

e.g.: b 
0                              i                              b.length 
 1   2   3   4   5   6    9  9  9  7  8  6  9  

Increasing i by 1 keeps inv true only if b[i] is min of b[i..] 

SelectionSort 

11 Another common way for 
people to sort cards 

Runtime 
with n = b.length 
§ Worst-case O(n2) 
§ Best-case O(n2) 
§ Expected-case O(n2) 

//sort b[], an array of int 
// inv: b[0..i-1] sorted  AND 
//         b[0..i-1]  <=  b[i..] 
for (int i= 0; i < b.length; i= i+1) { 
   int m= index of minimum of b[i..]; 
   Swap b[i] and b[m]; 
} 

sorted, smaller values         larger values b 
0                                    i                                 length 

Each iteration, swap min value of this section into b[i] 

Swapping b[i] and b[m] 

// Swap b[i] and b[m] 
int t= b[i]; 
b[i]= b[m]; 
b[m]= t; 

12 



3/6/17 

3 

Partition algorithm of quicksort 
13 

 
 

 
 

Swap array values around until b[h..k] looks like this: 
 
 
 
 

x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

pre: 

post: 

x is called 
the pivot 

20   31   24  19  45   56    4    20    5    72  14   99 
14 

pivot partition 
j 

 19   4     5   14    20   31  24   45   56   20   72  99      

Not yet 
sorted 

Not yet 
sorted 

these can be 
in any order 

these can be 
in any order The 20 could 

be in the other 
partition 

Partition algorithm 
15 

x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

b 

b 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

pre: 

post: 

Combine pre and post to get an invariant 

invariant 
needs at 

least 4 
sections 

Partition algorithm 
16 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

j= h; t= k; 
while (j < t) { 
    if (b[j+1] <= b[j]) { 
         Swap b[j+1] and b[j];   j= j+1; 
    } else { 
         Swap b[j+1] and b[t];   t= t-1; 
    } 
} 

Terminate when j = t, 
so the “?” segment is 
empty, so diagram 
looks like result 
diagram 

Initially, with j = h 
and t = k, this 
diagram looks like 
the start diagram 

Takes linear time: O(k+1-h) 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    

Function does the 
partition algorithm and 
returns position j of pivot 

int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
 
 
 
} 

QuickSort procedure
17 

Base case 

// Sort b[h..j-1] and b[j+1..k] 

QS(b, h, j-1);  
QS(b, j+1, k); 

        <= x                x           >= x                                                
h                              j                           k             

QuickSort 
18 

Quicksort developed by Sir Tony Hoare (he was 
knighted by the Queen of England for his 
contributions to education and CS). 
83 years old. 
Developed Quicksort in 1958. But he could not 
explain it to his colleague, so he gave up on it. 
Later, he saw a draft of the new language Algol 58 (which became 
Algol 60). It had recursive procedures. First time in a procedural 
programming language. “Ah!,” he said. “I know how to write it 
better now.” 15 minutes later, his colleague also understood it. 



3/6/17 

4 

Tony Hoare 
19 

Speaking in Olin 155 
in 2004 

Tony Hoare 
20 

Elaine Gries, Edsger and Ria Dijkstra, Tony and Jill Hoare 
1980s. 

Worst case quicksort: pivot always smallest value 
21 

x0                        >= x0 
j                                                             n                                                                               

partioning at depth 0 

x0   x1                  >= x1 
        j              

partioning at depth 1 

x0   x1   x2           >= x2 
               j              

partioning at depth 2 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);     QS(b, j+1, k); 

Depth of 
recursion: O(n) 
 
Processing at 
depth i: O(n-i) 
 
O(n*n) 

Best case quicksort: pivot always middle value 
22 

      <= x0            x0            >= x0 
0                          j                                 n 

depth 0. 1 segment of 
size ~n to partition. 

<=x1  x1  >= x1 x0  <=x2  x2  >=x2 Depth 2. 2 segments of 
size ~n/2 to partition. 

                                    
Depth 3.  4 segments of 
size ~n/4 to partition. 

Max depth: O(log n).   Time to partition on each level: O(n) 
Total time: O(n log n). 

Average time for Quicksort: n log n. Difficult calculation 

QuickSort complexity to sort array of length n 
23 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
    // Sort b[h..j-1] and b[j+1..k] 
   QS(b, h, j-1);  
   QS(b, j+1, k); 
} 

Time complexity 
Worst-case: O(n*n) 
Average-case: O(n log n) 

Worst-case space: O(n)!   
   --depth of recursion can be n 
Can rewrite it to have space O(log n) 
Show this at end of lecture if we have time 

Worst-case space: ? 
What’s depth of recursion? 

Partition. Key issue. How to choose pivot 
24 

Popular heuristics: Use 
w  first array value (not so good) 
w  middle array value (not so good) 
w  Choose a random element (not so good) 
w  median of first, middle, last, values (often used)! 

x             ?                      
h   h                       k             

   <= x     x     >= x                                                
h              j             k             

b 

b 

pre: 

post: 

Choosing pivot 
Ideal pivot: the median, 
since it splits array in half 
But computing is O(n), quite 
complicated 



3/6/17 

5 

Merge two adjacent sorted segments 

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted.  */ 
public static merge(int[] b, int h, int t, int k) { 
} 

25 

4 7 7 8 9 3 4 7 8 b 

3 4 4 7 7 7 8 8 9  b 

h                t                  k 
     sorted                    sorted                      
h                     t                        k             

            merged,   sorted                      
h                                              k             

Merge two adjacent sorted segments 

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted.  */ 
public static merge(int[] b, int h, int t, int k) { 
      Copy b[h..t] into a new array c; 
      Merge c and b[t+1..k] into b[h..k]; 
} 

26 

     sorted                    sorted                      
h                     t                        k             

            merged,   sorted                      
h                                              k             

Runs in time linear in size 
of b[h..k]. 
Look at this method in file 
searchSortAlgorithms.zip 
found in row for lecture on 
Lecture notes page of 
course website  

Merge two adjacent sorted segments 

// Merge sorted c and b[t+1..k] into b[h..k] 

27 

   x c 

    x and y, sorted 

   ?    y b 
h        t              k 

 head of x     tail of x c 
0                 i                  c.length 

invariant: 

0       t-h  
pre: x, y are sorted 

post: b 
h                           k 

tail of  y            ?    b 
h                 u                  v          k 

head of x and head of y, sorted    

b[h..u-1] ≤ c[i..] 

b[h..u-1] ≤ b[v..k] 

Mergesort 

/** Sort b[h..k] */ 
public static void mergesort(int[] b, int h, int k]) { 
    if (size b[h..k] < 2)    
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
 
 
 

28 

                      
h                     t                        k             

            merged,   sorted                      
h                                              k             

sorted  sorted  

Mergesort 

/** Sort b[h..k] */ 
public static void mergesort( 
           int[] b, int h, int k]) { 
    if (size b[h..k] < 2)    
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
 
 
 

29 

Merge: time proportional to n 
 
Depth of recursion: log n 
 
Can therefore show (later) 
that time taken is 
proportional to n log n 
 
But space is also proportional 
to n 

Let n = size of b[h..k] 

30 

QuickSort versus MergeSort 
30 

/** Sort b[h..k] */ 
public static void QS 
         (int[] b, int h, int k) { 
    if (k – h < 1) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);  
    QS(b, j+1, k); 
} 

/** Sort b[h..k] */ 
public static void MS 
         (int[] b, int h, int k) { 
    if (k  – h < 1) return; 
    MS(b, h, (h+k)/2);  
    MS(b, (h+k)/2 + 1, k); 
    merge(b, h, (h+k)/2, k); 
} 

One processes the array then recurses. 
One recurses then processes the array.  



3/6/17 

6 

Analysis of Matrix Multiplication 
31 

Multiply n-by-n  matrices A and B: 

Convention, matrix problems measured in terms of 
n, the number of rows, columns 
§ Input size is really 2n2, not n 
§ Worst-case time: O(n3) 
§ Expected-case time:O(n3) 

for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) { 
       c[i][j] = 0; 
       for (k = 0; k < n; k++) 

 c[i][j] += a[i][k]*b[k][j]; 
   } 

for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) { 
      throw new Exception(); 
}} 

32 

An aside. Will not be tested. 
Lower Bound for Comparison Sorting 

Goal: Determine minimum 
time required to sort n items 

Note: we want worst-case, 
not best-case time 
¤ Best-case doesn’t tell us 

much. E.g. Insertion Sort 
takes O(n) time on already-
sorted input 

¤ Want to know worst-case 
time for best possible 
algorithm 

� How can we prove anything 
about the best possible 
algorithm? 

§ Want to find characteristics that 
are common to all sorting 
algorithms 

§ Limit attention to comparison-
based algorithms and try to 
count number of comparisons 

33 

An aside. Will not be tested. 
Lower Bound for Comparison Sorting 

¨  Comparison-based algorithms make 
decisions based on comparison of 
data elements 

¨  Gives a comparison tree 
¨  If algorithm fails to terminate for 

some input, comparison tree is infinite 
¨  Height of comparison tree represents 

worst-case number of comparisons for 
that algorithm 

¨  Can show: Any correct comparison-
based algorithm must make at least 
n log n comparisons in the worst case 

a[i] < a[j] 
yes no 

34 

An aside. Will not be tested. 
Lower Bound for Comparison Sorting 

¨  Say we have a correct comparison-based algorithm 

¨  Suppose we want to sort the elements in an array b[] 

¨  Assume the elements of b[] are distinct 

¨  Any permutation of the elements is initially possible 

¨  When done, b[] is sorted 

¨  But the algorithm could not have taken the same path in 
the comparison tree on different input permutations 

35 

An aside. Will not be tested. 
Lower Bound for Comparison Sorting 

How many input permutations are possible?  n! ~ 2n log n 

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree  

To have at least n! ~ 2n log n leaves, it must have height at 
least n log n (since it is only binary branching, the number 
of nodes at most doubles at every depth) 

Therefore its longest path must be of length at least  
n log n, and that is its worst-case running time 

Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 

36 



3/6/17 

7 

Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively. We may show you this later. Not today! 

 
It’s on the next two slides. You do not have to study this for the 
prelim! 

37 

QuickSort with logarithmic space
38 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          Reduce the size of b[h1..k1], keeping inv true 
    } 
} 

QuickSort with logarithmic space
39 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          int j= partition(b, h1, k1); 
          // b[h1..j-1] <= b[j] <= b[j+1..k1] 
          if (b[h1..j-1] smaller than b[j+1..k1])  
                {  QS(b, h, j-1);  h1=  j+1; } 
         else   
                {QS(b, j+1, k1);  k1=  j-1; } 
    } 
} 

Only the smaller 
segment is sorted 

recursively. If b[h1..k1] 
has size n, the smaller 

segment has size < n/2. 
         Therefore, depth of 
recursion is at most log n 


