

A3 and Prelim

- 379/607 (62\%) people got 65/65 for correctness on A3
- 558/607 (92%) got at least $60 / 65$ for correctness on A3
\square Prelim: Next Tuesday evening, March 14
Read the Exams page on course website to determine when
you take the prelim (5:30 or 7:30) and what to do if you have a conflict.
- If necessary, complete CMS assignment P1Conflict by the end of Wednesday (tomorrow).
- So far, only 15 people filled it out!

InsertionSort

Push b[i] down ...

InsertionSort	
, _ sot bi, anay of	
// sort b[], an array of int $/ /$ inv: b[0..i-1] is sorted	
for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{b}$.length; $\mathrm{i}=\mathrm{i}+1)$ \{	Let $\mathrm{n}=\mathrm{b}$.length
Push $\mathrm{b}[\mathrm{i}]$ down to its sorted position in $\mathrm{b}[0 . \mathrm{i}]$	- Worst-case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ (reverse-sorted input)
Pushing $\mathrm{b}[\mathrm{i}]$ down can take i swaps. Worst case takes	- Best-case: O(n) (sorted input)
$1+2+3+\ldots \mathrm{n}-1=(\mathrm{n}-1) * \mathrm{n} / 2$ Swaps.	- Expected case: O(n^{2})

SelectionSort			
$/ /$ sort b[], an array of int$/ /$ inv: $\mathrm{b}[0 . \mathrm{i}-1]$ sorted AND$/ / \quad \quad \mathrm{b}[0 . . \mathrm{i}-1]<=\mathrm{b}[\mathrm{i} .$.for (int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{b}$. length; $\mathrm{i}=\mathrm{i}+1)\{$int $\mathrm{m}=$ index of minimum of $\mathrm{b}[\mathrm{i} .$.Swap $\mathrm{b}[\mathrm{i}]$ and $\mathrm{b}[\mathrm{m}]$;$\}$			Another common way for people to sort cards Runtime with $\mathrm{n}=\mathrm{b}$.length - Worst-case O(n²) - Best-case O(n²) - Expected-case O(n²)

SelectionSort

	b.leng	b.length	0	b.length
pre: b	?	post: b	sorted	
		i	b.length	
inv: b	sorted, $<=\mathrm{b}[\mathrm{i}$. . $]$	>= b[0..i-] Add	itional term

Keep invariant true while making progress?

Increasing i by 1 keeps inv true only if $\mathrm{b}[\mathrm{i}]$ is \min of $\mathrm{b}[\mathrm{i} .$.

Swapping $b[i]$ and $b[m]$
// Swap b[i] and $b[\mathrm{~m}]$
int $\mathrm{t}=\mathrm{b}[\mathrm{i} ;$
$\mathrm{b}[\mathrm{i}]=\mathrm{b}[\mathrm{m}] ;$
$\mathrm{b}[\mathrm{m}]=\mathrm{t} ;$

Partition algorithm

invariant needs at least 4 sections

Partition algorithm

h		j			Initially, with $\mathrm{j}=\mathrm{h}$ and $t=k$, this diagram looks like the start diagram
b	<= x	x	$?$	$>=\mathrm{x}$	
```\(\mathrm{j}=\mathrm{h}\); \(\mathrm{t}=\mathrm{k}\); while \((\mathrm{j}<\mathrm{t})\) \{ if \((\mathrm{b}[\mathrm{j}+1]<=\mathrm{b}[\mathrm{j}])\) \{ Swap b[j+1] and b[j]; \(\mathrm{j}=\mathrm{j}+1\); \} else \{```					
Swap $\mathrm{b}[\mathrm{j}+1]$ and $\mathrm{b}[\mathrm{t}] ; \mathrm{t}=\mathrm{t}-1$; \}					Terminate when $\mathrm{j}=\mathrm{t}$, so the "?" segment is empty, so diagram looks like result
Takes linear time: $\mathrm{O}(\mathrm{k}+1-\mathrm{h})$					diagram


QuickSort
Quicksort developed by Sir Tony Hoare (he was   knighted by the Queen of England for his   contributions to education and CS).   83 years old.   Developed Quicksort in 1958. But he could not   explain it to his colleague, so he gave up on it.   Later, he saw a draft of the new language Algol 58 (which became   Algol 60 . It had recursive procedures. First time in a procedural   programming language. "Ah!," he said. "I know how to write it   better now." 15 minutes later, his colleague also understood it.







\}\}

An aside. Will not be tested. Lower Bound for Comparison Sorting

Goal: Determine minimum time required to sort $n$ items
Note: we want worst-case,
not best-case time
$\square$ Best-case doesn' t tell us much. E.g. Insertion Sort takes $\mathrm{O}(\mathrm{n})$ time on alreadysorted input

- Want to know worst-case time for best possible algorithm
- How can we prove anything about the best possible algorithm?
- Want to find characteristics that are common to all sorting algorithms
- Limit attention to comparison-
based algorithms and try to count number of comparisons

An aside. Will not be tested. Lower Bound for Comparison Sorting
$\square$ Comparison-based algorithms make decisions based on comparison of data elements

- Gives a comparison tree
$\square$ If algorithm fails to terminate for some input, comparison tree is infinite
$\square$ Height of comparison tree represents worst-case number of comparisons for $A \hookrightarrow \Lambda A$ that algorithm
- Can show: Any correct comparison-
based algorithm must make at least
$\mathrm{n} \log \mathrm{n}$ comparisons in the worst case



## An aside. Will not be tested.

 Lower Bound for Comparison SortingHow many input permutations are possible? $\mathrm{n}!\sim 2^{\mathrm{n} \log \mathrm{n}}$
For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree

To have at least $n!\sim 2^{n \log n}$ leaves, it must have height at least $\mathrm{n} \log \mathrm{n}$ (since it is only binary branching, the number of nodes at most doubles at every depth)

Therefore its longest path must be of length at least $\mathrm{n} \log \mathrm{n}$, and that is its worst-case running time

## Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some recursively

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some recursively. We may show you this later. Not today!

It's on the next two slides. You do not have to study this for the prelim!

QuickSort with logarithmic space

```
/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
}
```

QuickSort with logarithmic space
${ }^{39}$ /** Sort b[h..k]. */
public static void $\mathrm{QS}($ int [] b , int h , int k$)\{$
int $\mathrm{h} 1=\mathrm{h}$; int $\mathrm{k} \mathrm{l}=\mathrm{k}$;
// invariant $\mathrm{b}[\mathrm{h} . \mathrm{k}]$ is sorted if $\mathrm{b}[\mathrm{h} 1 . . \mathrm{k} 1]$ is sorted
while (b[h1..k1] has more than 1 element) \{
int $\mathrm{j}=$ partition( $\mathrm{b}, \mathrm{h} 1, \mathrm{k} 1$ );
$/ / \mathrm{b}[\mathrm{h} 1 . . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . \mathrm{k} 1]$
if ( $\mathrm{b}[\mathrm{h} 1 . . \mathrm{j}-1]$ smaller than $\mathrm{b}[\mathrm{j}+1 . . \mathrm{k} 1]$ )
Only the smaller
segment is sorted
\{ QS(b, h, j-1); hl= j+1; \}
else
$\{\mathrm{QS}(\mathrm{b}, \mathrm{j}+1, \mathrm{k} 1) ; \mathrm{k} 1=\mathrm{j}-1 ;\}$
\}
\}

