Quotes about loops "O! Thou hast damnable iteration and art, indeed, able to corrupt a saint." Shakespeare, *Henry IV*, Pt I, 1 ii

"Use not vain repetition, as the heathen do." *Matthew* V, 48

Your "if" is the only peacemaker; much virtue in "if". Shakespeare, *As You Like It*.

ASYMPTOTIC COMPLEXITY SEARCHING/SORTING

Lecture 10 CS2110 – Spring 2017

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?				
What do we mean by better? Faster?	Your time is most important!			
 Less space? Easier to code? Easier to maintain? Required for homework? 	FIRST, Aim for simplicity, ease of understanding, correctness.			
How do we measure time andspace of an algorithm?	SECOND, Worry about efficiency only when it is needed.			

Basic Step: one "constant time" operation

3

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)

Basic Step: one "constant time" operation. Example of counting basic steps in a loop

// Store sum of 1..n in sum

sum= 0;

```
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)</pre>
```

```
sum = sum + n
```

All operations are basic steps, take constant time. There are n loop iterations. Therefore, takes time proportional to n. Linear algorithm in n

Statement/	Number of	
expression	times done	
sum= 0;	1	
k= 1;	1	
k <= n	n+1	
k = k + 1;	n	
sum = sum + n;	n	
Total basic steps		
executed	3n + 3	

Basic Step: one "constant time" operation

// Store sum of 1..n in sum
sum= 0;

```
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1)</pre>
```

sum = sum + n

All operations are basic steps, take constant time. There are n loop iterations. Therefore, takes time proportional to n. Linear algorithm in n // Store n copies of 'c' in s s= "";

// inv: s contains k-1 copies of 'c'
for (int k= 1; k = n; k= k+1)
 s= s + 'c';

All operations are basic steps, except for catenation. For each k, catenation creates and fills k array elements. Total number created: $1+2+3+\dots+n$, or n(n+1)/2 = n*n/2 + 1/2Quadratic algorithm in n

Linear versus quadractic

// Store sum of 1..n in sum sum=0;

```
for (int k=1; k \le n; k=k+1)
```

```
sum = sum + n
```

// Store n copies of 'c' in s s= "";

// inv: sum = sum of 1..(k-1) // inv: s contains k-1 copies of 'c'

for (int
$$k=1$$
; $k = n$; $k=k+1$)

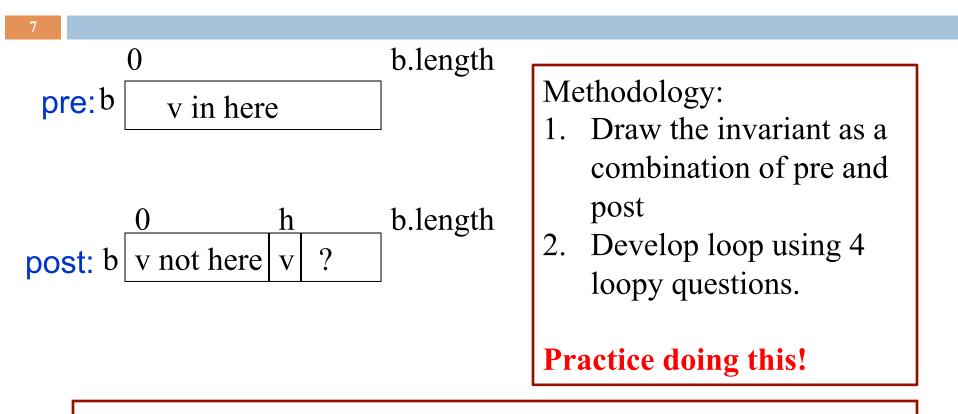
s = s + c';

Linear algorithm

Quadratic algorithm

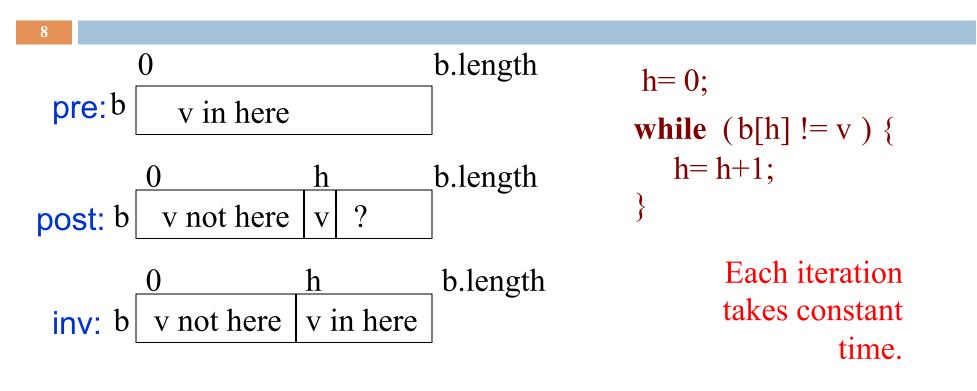
In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that One is linear in n —takes time proportional to n One is quadratic in n —takes time proportional to n^2

Linear search for v in b[0..]



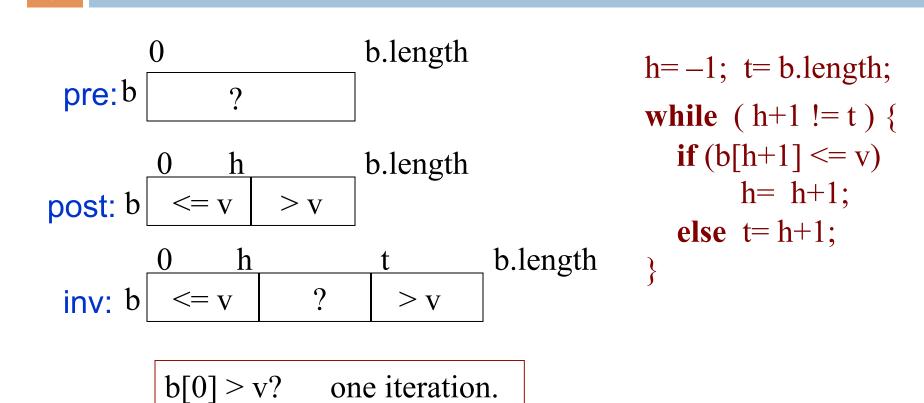
Once you get the knack of doing this, you will *know* these algorithms not because you memorize code but because you can develop them at will from the pre- and post-conditions

Linear search for v in b[0..]



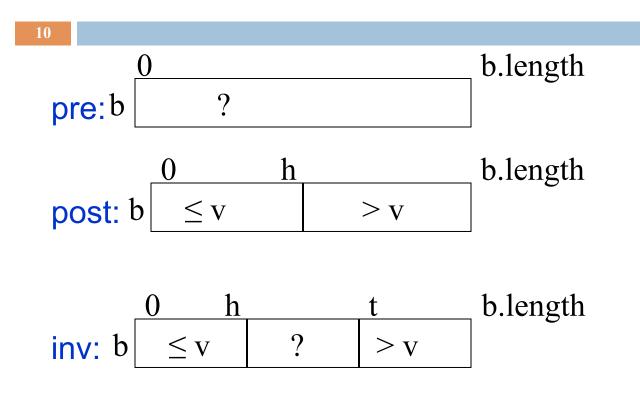
In the worst case, requires b.length iterations. **Worst case time**: proportional to b.length. **Average (expected) time:** A little statistics tells you b.length/2 iterations, still proportional to b.length

Linear search as in problem set: **b** is sorted



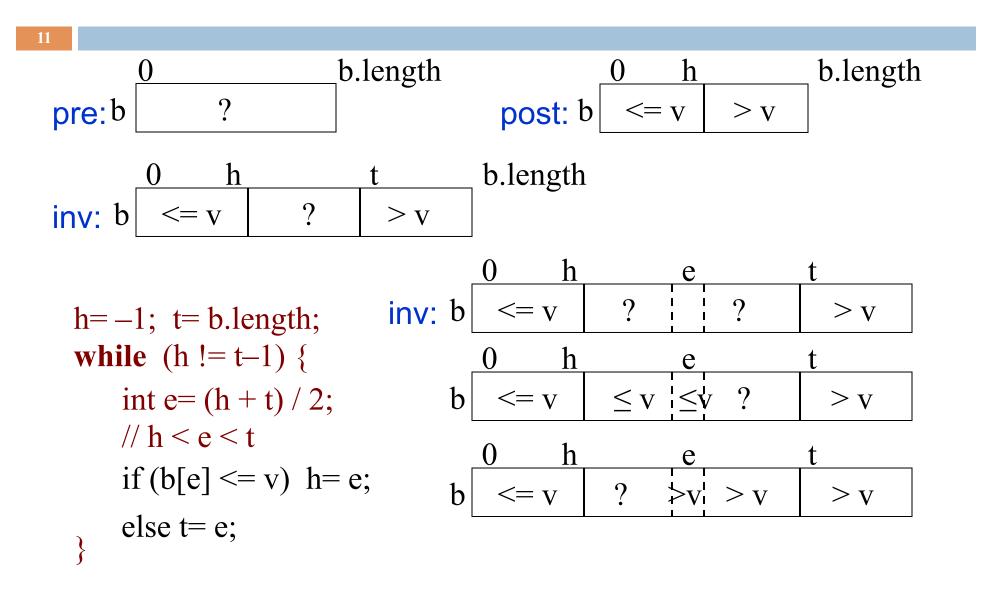
 $b[b.length-1] \le v$? b.length iterations Worst case time: proportional to size of b

b is sorted ---use a binary search?



Since b is sorted, can cut ? segment in half. As in a dictionary search

Binary search for v in b: b is sorted



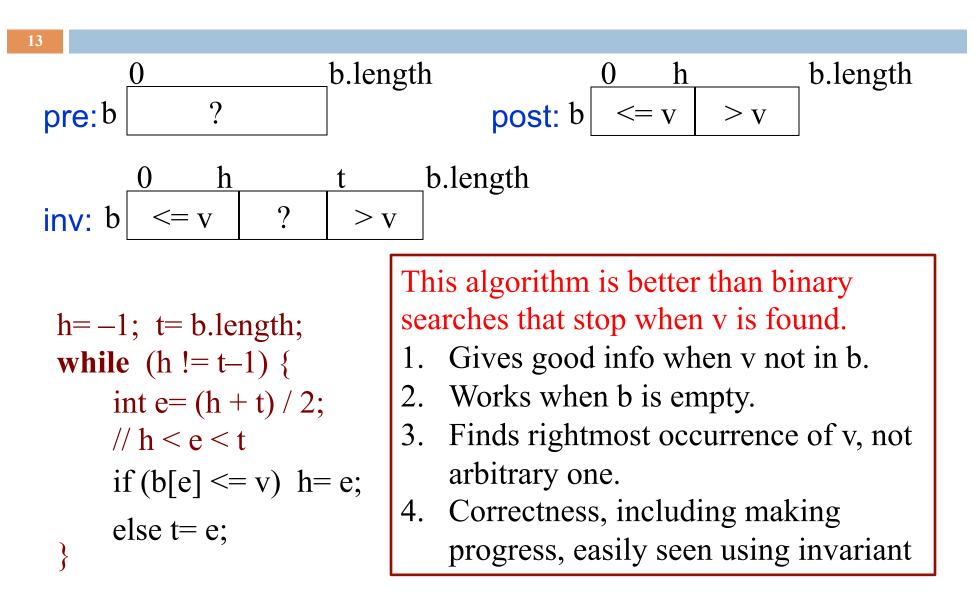
Binary search: an O(log n) algorithm

b.length = nh inv: b ? > v $\leq = v$ h=-1; t= b.length; <u>e</u> :::? ? while $(h != t-1) \{$ inv: b $\leq = v$ > vint e = (h+t)/2; $n = 2^{**}k$? About k iterations **if** $(b[e] \le v)$ h= e; else t= e; Time taken is proportional to k, }

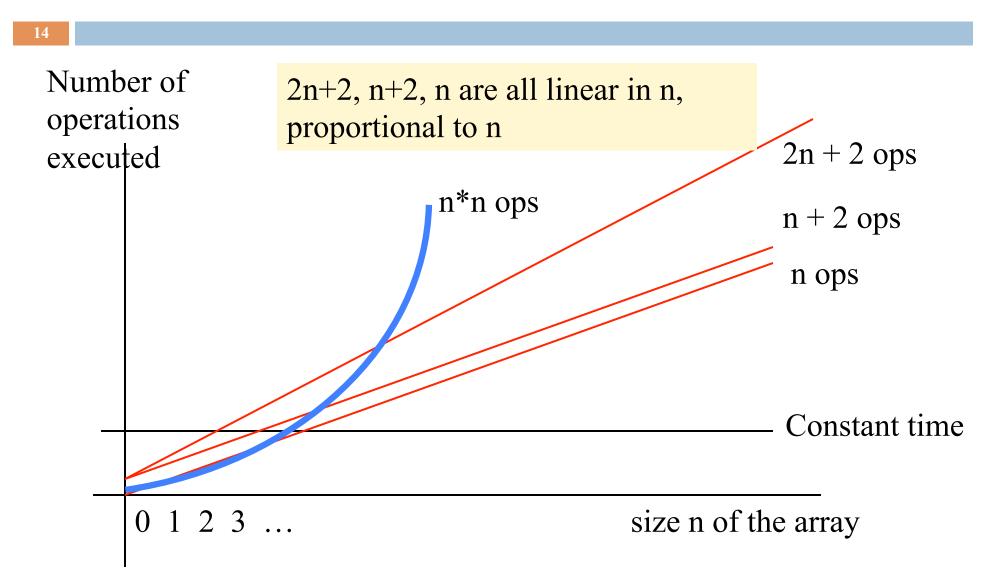
Each iteration cuts the size of the ? segment in half.

Time taken is proportional to k or log n. A *logarithmic algorithm*

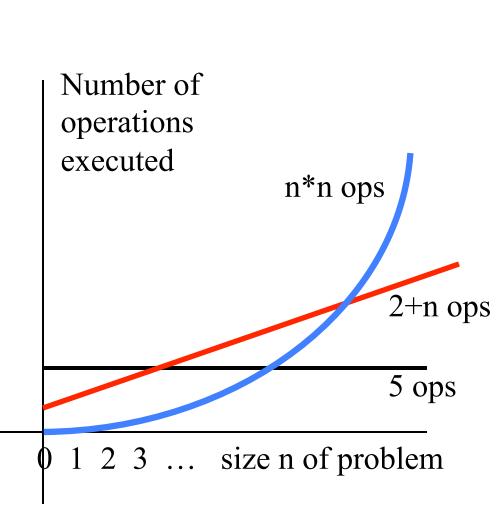
Binary search for v in b: b is sorted



Looking at execution speed Process an array of size n



What do we want from a definition of "runtime complexity"?



1. Distinguish among cases for large n, not small n

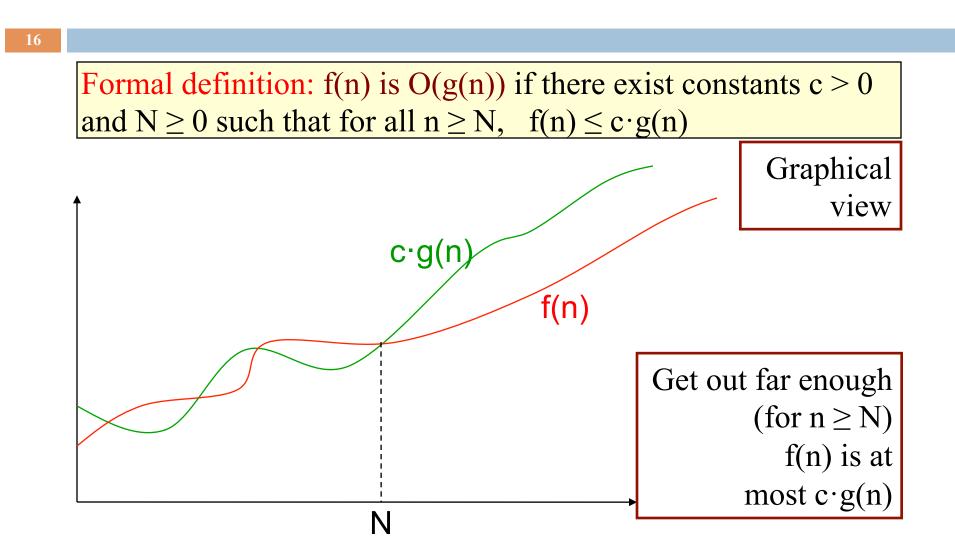
2. Distinguish among important cases, like

- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations

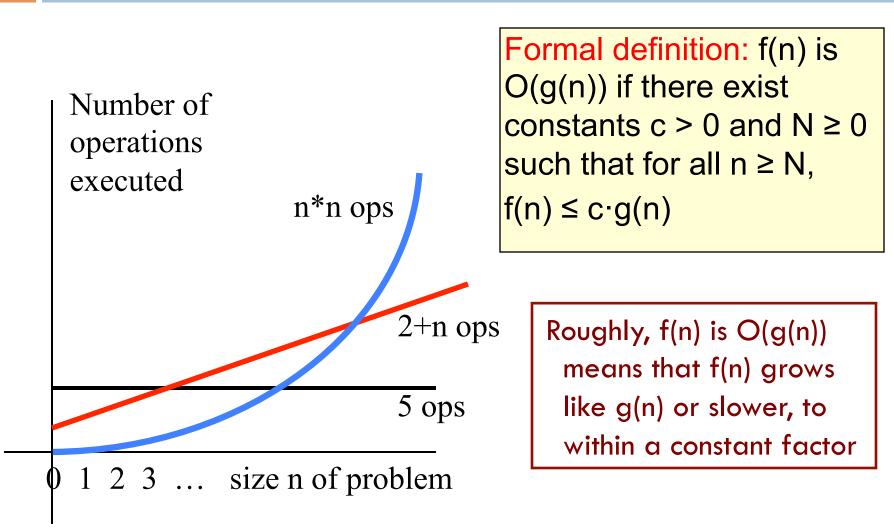
3. Don't distinguish among trivially different cases.

- 5 or 50 operations
- n, n+2, or 4n operations

Definition of O(...)



What do we want from a definition of "runtime complexity"?



Prove that $(n^2 + n)$ is $O(n^2)$

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(n^2 + n)$ is $O(n^2)$

Methodology:

Start with f(n) and slowly transform into $c \cdot g(n)$:

- \Box Use = and <= and < steps
- At appropriate point, can choose N to help calculation
- At appropriate point, can choose c to help calculation

Prove that $(n^2 + n)$ is $O(n^2)$

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(n^2 + n)$ is $O(n^2)$

f(n)

- = <definition of f(n)>
 n² + n
- <= <for $n \ge 1$, $n \le n^2$ > $n^2 + n^2$
- = <arith>

 $2*n^2$

= <definition of g(n) = n²>
2*g(n)

Transform f(n) into $c \cdot g(n)$:

- •Use =, <=, < steps
- •Choose N to help calc.
- •Choose c to help calc

Choose
$$N = 1$$
 and $c = 2$

Prove that $100 n + \log n$ is O(n)

20

Formal definition: f(n) is O(g(n)) if there exist constants c and N such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

f(n)

= <put in what f(n) is>

 $100 n + \log n$

 $<= \qquad < We know log n \le n \text{ for } n \ge 1 >$

100 n + n

- = <arith>
 - 101 n
- = <g(n) = n> 101 g(n)

Choose N = 1 and c = 101

Do NOT say or write f(n) = O(g(n))

Formal definition: f(n) is O(g(n)) if there exist constants c and N such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.

Here's an example to show what happens when we use = this way.

We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

n+2 = O(n)n+3 = O(n)

But then, by transitivity of equality, we have n+2 = n+3. We have proved something that is false. Not good.

O(...) Examples

```
22
```

```
Let f(n) = 3n^2 + 6n - 7
  \Box f(n) is O(n<sup>2</sup>)
  \Box f(n) is O(n<sup>3</sup>)
  \Box f(n) is O(n<sup>4</sup>)
  p(n) = 4 n \log n + 34 n - 89
  \square p(n) is O(n log n)
  \square p(n) is O(n<sup>2</sup>)
h(n) = 20 \cdot 2^n + 40n
  h(n) is O(2^n)
a(n) = 34
  □ a(n) is O(1)
```

Only the *leading* term (the term that grows most rapidly) matters

If it's O(n²), it's also O(n³) etc! However, we always use the smallest one

Commonly Seen Time Bounds

23

O(1)	constant	excellent	
O(log n)	logarithmic	excellent	
O(n)	linear	good	
O(n log n)	n log n	pretty good	
O(n ²)	quadratic	OK	
O(n ³)	cubic	maybe OK	
O(2 ⁿ)	exponential	too slow	

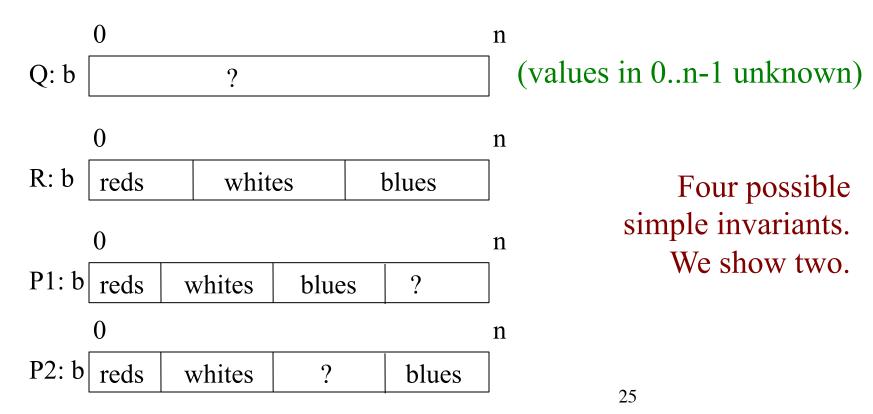
Problem-size examples

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

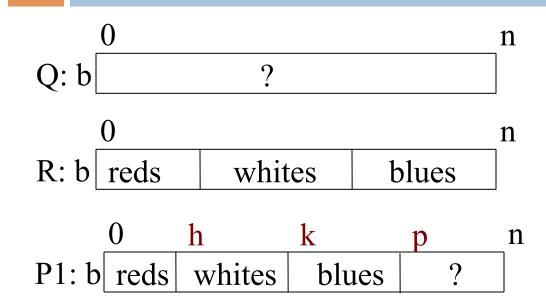
operations	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n ²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0.n] to truthify postcondition R:

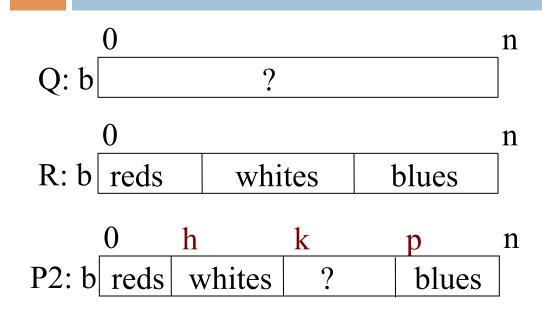


Dutch National Flag Algorithm: invariant P1



Don't need long mnemonic names for these variables! The invariant gives you all the info you need about them! h=0; k=h; p=k;while (p != n)) { if (b[p] blue) p = p+1;else if (b[p] white) { swap b[p], b[k]; p=p+1; k=k+1; } else { // b[p] red //REQUIRES // TWO SWAPS // you can finish it

Dutch National Flag Algorithm: invariant P2



Use inv P1:

perhaps 2 swaps per iteration. Use inv P2:

at most 1 swap per iteration.

h=0; k=h; p=n;while (k!=p)) { if (b[k] white) k = k+1;else if (b[p] blue) { p=p-1; swap b[k], b[p]; } else { // b[k] is red swap b[k], b[h]; h=h+1; k=k+1;}