
CS/ENGRD 2110
SPRING 2017
Lecture 5: Local vars; Inside-out rule; constructors
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

1. Writing tests to check that the code works when the
precondition is satisfied is not optional.

2. Writing assertions to verify the precondition is satisfied
is not optional, and if you do so incorrectly you will lose
points.

3. Writing tests to verify that you have done (2) correctly is
optional. Piazza note @129 tells you how.

4. Watch the loop invariant tutorials before next week’s
recitation. They are linked from the Lecture Notes page.

References to text and JavaSummary.pptx
3

¨ Local variable: variable declared in a method body
B.10–B.11 slide 45

¨ Inside-out rule, bottom-up/overriding rule C.15 slide 31-32
and consequences thereof slide 45

¨ Use of this B.10 slide 23-24 and super C.15 slide 28, 33
¨ Constructors in a subclass C.9–C.10 slide 24-29
¨ First statement of a constructor body must be a call on another

constructor —if not Java puts in super(); C.10 slide 29

Homework
4

Visit course website, click on Resources and then on Code Style
Guidelines. Study

4.2 Keep methods short
4.3 Use statement-comments …

4.4 Use returns to simplify method structure
4.6 Declare local variables close to first use …

Local variables
5

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Parameter: variable
declared in () of
method header

middle(8, 6, 7)

a 8 c 7b 6

Local variable:
variable

declared in
method body

temp ?

All parameters and local variables
are created when a call is executed,
before the method body is executed.
They are destroyed when method
body terminates.

Scope of local variables
6

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Scope of local variable (where it
can be used): from its declaration
to the end of the block in which it
is declared.

block

Scope In General: Inside-out rule
7

Inside-out rule: Code in a construct can reference names declared in
that construct, as well as names that appear in enclosing constructs.
(If name is declared twice, the closer one prevails.)

/** A useless class to illustrate scopes*/
public class Class{

private int field;
public void method(int parameter) {

if (field > parameter) {
int temp= parameter;

}
}

}

block method
class

Principle: declaration placement
8

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

int temp;
if (b > c) {

temp= b;
b= c;
c= temp;

}
if (a <= b) {

return b;
}
return Math.min(a, c);

}

Principle: Declare a local variable
as close to its first use as possible.

Not good! No need for reader to
know about temp except when
reading the then-part of the if-
statement

Assertions promote understanding
9

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}

if (a <= b) {
return b;

}

return Math.min(a, c);
}

Assertion: Asserting that b <= c
at this point. Helps reader
understand code below.

/** Return middle value of a, b, c (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b > c) {
int temp= b;
b= c;
c= temp;

}
// b <= c
if (a <= b) {

return b;
}
// a and c are both greater than b
return Math.min(a, c);

}

Poll time! What 3 numbers are printed?
10

public class ScopeQuiz {
private int a;

public ScopeQuiz(int b) {
System.out.println(a);
int a = b + 1;
this.a = a;
System.out.println(a);
a = a + 1;

}

public static void main(String[] args) {
int a = 5;
ScopeQuiz s = new ScopeQuiz(a);
System.out.println(s.a);

}
}

Bottom-up/overriding rule
11

toString() { … }

Object
Person@20

Person

toString()

name “Turing”

turing Person@20Which method toString()
is called by

turing.toString() ?

Overriding rule or
bottom-up rule:
To find out which is used,
start at the bottom of the
object and search upward
until a matching one is
found.

Calling a constructor from a constructor
12

public class Time
private int hr; //hour of day, 0..23
private int min; // minute of hour, 0..59

/** Constructor: instance with h hours and m minutes */
public Time(int h, int m) { hr = h; min = m; assert …; }

/** Constructor: instance with m minutes … */
public Time(int m) {

hr = m / 60;
min = m % 60;

}
…

}

Want to change body
to call first constructor

Calling a constructor from a constructor
13

public class Time
private int hr; //hour of day, 0..23
private int min; // minute of hour, 0..59

/** Constructor: instance with h hours and m minutes … */
public Time(int h, int m) { hr = h; min = m; assert …; }

/** Constructor: instance with m minutes … */
public Time(int m) {

this(m / 60, m % 60);
}
…

} Use this (not Time) to call another
constructor in the class.
Must be first statement in constructor body!

/** Constructor: person “f n” */
public Person(String f, String l) {

first= n;
last= l;

}

/** Constructor: PhD “Dr. f m. l”*/
public PhD(String f, char m, String l) {

super(f, l);
middle= m;

}

new PhD(“David”, ‘J’, “Gries”);

Constructing with a Superclass
14

PhD@a0
Object

first last

toString()

Person

PhD

middle

getName() toString()

null null

‘\0’

“David” “Gries”

‘J’

Use super (not Person) to
call superclass constructor.

Must be first statement
in constructor body!

About super
15

Within a subclass object,
super refers to the
partition above the one
that contains super.

Because of
keyword super,
the call toString
here refers to the
Person partition.

PhD@a0
Object

first last

toString()

Person

PhDmiddle

getName() toString()

“David” “Gries”

‘J’

toString() { … super.toString() … }

Bottom-Up and Inside-Out
16

PhD@a0
Object

first last

toString()

Person

PhDmiddle

getName() toString()

“David” “Gries”

‘J’

getName() toString()

super

Person

sep ‘ ‘

Without OO …
17

Without OO, you would write a long involved method:

public double getName(Person p) {
if (p is a PhD)

{ … }
else if (p is a GradStudent)

{ … }

else if (p prefers anonymity)
{ … }

else …
}

OO eliminates need for many of
these long, convoluted methods,
which are hard to maintain.

Instead, each subclass has its own
getName.

Results in many overriding
method implementations, each of
which is usually very short

