
07/02/2017

1

CS/ENGRD 2110
SPRING 2017
Lecture 4: The class hierarchy; static components
http://cs.cornell.edu/courses/cs2110

1

Announcements
2

¨ We're pleased with how many people are already working on
A1, as evidenced by Piazza activity
¤ Please be sure to look at Piazza note @6 every day for frequently

asked questions and answers.
¤ Also search existing questions!

¤ Groups: Forming a group of two? Do it well before you submit – at
least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

¤ Reminder: groups must complete the assignment working together.

¨ Reminder: before this week’s section, watch the tutorial videos
on exception handling:
¤ www.cs.cornell.edu/courses/cs2110/2017sp/online/exceptions/EX1.html

A1: Checking Correctness of Assertions
3

try {
//<code with assertion that should fail>
fail("");

} catch (AssertionError e) {
if (e.getMessage() != null) {

fail();
}

}

¨ See Piazza note @129 (also linked from A1 FAQ)
¨ The description there will make sense after you’ve

learned about exceptions in recitation.

References to text and JavaSummary.pptx
4

¨ Class Object, superest class of them all.
Text: C.23 slide 30

¨ Function toString() C.24 slide 31-33
¨ Overriding a method C15–C16 slide 31-32
¨ Static components (methods and fields) B.27 slide 21, 45
¨ Java application: a program with a class that declares a

method with this signature:
public static void main(String[])

Homework
5

1. Read the text, about applications: Appendix A.1–A.3
2. Read the text, about the if-statement: A.38–A.40
3. Visit course website, click on Resources and then on Code

Style Guidelines. Study
2. Format Conventions
4.5 About then-part and else-part of if-statement

Where am I? Big ideas so far.
6

¨ Java variables have types (L1)
¤ A type is a set of values and operations on them

(int: +, -, *, /, %, etc.)

¨ Classes define new types (L2)
¤ Methods are the operations on objects of that class.
¤ Fields allow objects to store data (L3)

¨ Software Engineering Principle:
¤ Give user access to functionality, not the implementation

details

07/02/2017

2

Example: Method specs should not mention fields
7

public class Time {
private int hr; //in 0..23
private int min; //in 0..59
/** return hour of day*/
public int getHour() {
return h;

}

/** return hour of day*/
public int getHour() {

return min / 60;
}

Time@fa8
Timehr 9

min 5
getHour()
getMin()
toString()setHour(int)

public class Time {
// min, in 0..23*60+59
private int min;

Time@fa8
Timemin 545

getHour() getMin()
toString() setHour(int)

Specs of methods stay the same.
Implementations, including fields, change!

Decide
to change
implemen

-tation

A bit about testing
8

Test case: Set of input values, together with the expected output.

Develop test cases for a method from its specification --- even
before you write the method’s body.

/** return the number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters */
public int numberOfVowels(String w) {

…
}

Developing test
cases first, in

“critique” mode, can
prevent wasted work

and errors

How many vowels in each of these words?
creek
syzygy
yellow

Class W (for Worker)
9

/** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: n not null, s in 0..999999999 with no leading zeros.*/

publicW(String n, int s, W b)

/** = worker's last name */
public String getLname()

/** = last 4 SSN digits */
public String getSsn()

/** = worker's boss (null if none) */
publicW getBoss()

/** Set boss to b */
public void setBoss(W b)

W@af
Wlname “Rawlings”

ssn 123456789
boss null

W(…) getLname()
getSsn() getBoss() setBoss(W)

Contains other methods!

toString()
equals(Object) hashCode()

Class Object: the superest class of them all
10

Java: Every class that does not
extend another extends class
Object. That is,

public class W {…}

is equivalent to

public class W extends Object {…}

W@af

Wlname “Rawlings”
ssn 123456789

boss null
W(…) getLname()
getSsn(), getBoss() setBoss(W)

ObjecttoString()
equals(Object) hashCode()

We draw object like this

We often omit this partition to
reduce clutter; we know that it
is always there.

A note on design
11

¨ Don’t use extends just to get access to hidden
members!

¨ The inheritance hierarchy should reflect modeling
semantics, not implementation shortcuts

¨ A should extend B if and only if A “is a” B
¤ An elephant is an animal, so Elephant extends Animal

¤ A car is a vehicle, so Car extends Vehicle
¤ An instance of any class is an object, so

AnyClass extends java.lang.Object

A note on design
12

¨ Don’t use extends just to get access to hidden
members!

¨ The inheritance hierarchy should reflect modeling
semantics, not implementation shortcuts

¨ Which of the following seem like reasonable
designs?
A. Triangle extends Shape { … }
B. PHDTester extends PHD { … }

C. BankAccount extends CheckingAccount { … }

07/02/2017

3

A note on design
13

¨ Which of the following seem like reasonable
designs?
A. Triangle extends Shape { … }

A. Yes! A triangle is a kind of shape.

B. PHDTester extends PHD { … }
A. No! A PHDTester “tests a” PHD, but itself is not a PHD.

C. BankAccount extends CheckingAccount { … }
A. No! A checking account is a kind of bank account; we

likely would prefer:

CheckingAccount extends BankAccount { ... }

toString() gives us the “name” of the object.
14

The name of the object below is

PHD@aa11bb24

It contains a pointer to the object –i.e. its address in memory and
you can call it a pointer if you wish – I prefer to call it a reference.

“Gries”
nullad1 ad2

advisees
null

17

name

PHD@aa11bb24

PhD@aa11bb24e
PhD

Variable e, declared as
PHD e;

contains not the object but the
name of the object (or a
reference to the object).

PHD

Method toString
15

Object
W@af

lname “Rawlings”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

Java Convention: Define toString() in
any class to return a representation of an
object, giving info about the values in its
fields.

New definitions of toString() override
the definition in Object.toString()

c W@af

toString() …c.toString() calls this method

In appropriate places, the expression
c automatically does c.toString()

Method toString
16

Object
W@af

lname “Rawlings”
ssn 123456789

boss null

W

getSsn() …

toString() …

toString() in Object returns the name of the object: W@af

public class W {

…

/** Return a representation of this object */
public String toString() {
return “Worker ” + lname

+ “ has SSN ???-??-” + getSsn()
+ (boss == null

? “”
: “ and boss ” + boss.lname);

}

c W@af

toString() …c.toString() calls this method

Another example of toString()
17

/** An instance represents a point (x, y) in the plane */
public class Point {

private int x; // x-coordinate
private int y; // y-coordinate
…
/** = repr. of this point in form “(x, y)” */
public String toString() {

return “(” + x + “, ” + y + “)”;
}

}

Point@fa8
Point

x 9 y 5

Function toString should give the values in the
fields in a format that makes sense for the class.

(9, 5)

What about this
18

¨ this keyword: this evaluates to the name of the object in
which it occurs

¨ Makes it possible for an object to access its own name (or
pointer)

¨ Example: Referencing a shadowed class field

public class Point {
public int x = 0;
public int y = 0;

//constructor
public Point(int x, int y) {

x = x;
y = y;

}
}

public class Point {
public int x = 0;
public int y = 0;

//constructor
public Point(int x, int y) {

this.x = x;
this.y = y;

}
}Inside-out rule shows that

field x is inaccessible!

07/02/2017

4

Class Hierarchy Quiz
19

1. How many levels deep is JFrame in the class
hierarchy?

¤ (Object is JFrame’s super-super-…-superclass. How
many supers are there?)

2. In which class is JFrame’s getHeight() method
defined?

¤ (hint: it’s not JFrame!)

Intro to static components
20

W@af
W

lname “Om”
boss null

isBoss(W c) {
…}

W@b4
W

lname “Jo”
boss W@af

isBoss(W c) {
return

this == c.boss; }

/** = “this object is c’s boss”.
Pre: c is not null. */

public boolean isBoss(W c) {
return this == c.boss;

}

keyword this evaluates
to the name of the object

in which it appears

x.isBoss(y) is false

y W@afx W@b4

y.isBoss(x) is true

Spec: return the value of
that true-false sentence.
True if this object is c’s
boss, false otherwise

Intro to static components
21

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “this object is c’s boss”.
Pre: c is not null. */

public boolean isBoss(W c) {
return this == c.boss;

}

/** = “b is c’s boss”.
Pre: b and c are not null. */

public boolean isBoss(W b, W c) {
return b == c.getBoss();

}

isBoss(W,W) isBoss(W,W)

y W@afx W@b4

Body doesn’t refer to any
field or method in the object.

Why put method in object?

Intro to static components
22

W@af
W

lname “Om”

ssn 35

boss null

isBoss(W)

W@b4
W

lname “Jo”

ssn 21

boss W@af

isBoss(W)

/** = “b is c’s boss”.
Pre: b and c are not null. */

public static boolean isBoss(W b, W c) {
return b == c.getBoss();

}

isBoss(W,W) y W@afx W@b4

static: there is only one
copy of the method. It is
not in each object

Box for W (objects, static components)

x.isBoss(x, y)
y.isBoss(x, y)

Preferred:
W.isBoss(x, y)

Good example of static methods
23

¨ java.lang.Math
http://docs.oracle.com/javase/8/docs/api/java/lang/Math.html

¨ Or find it by googling
java.lang.Math 8

Use of static variables: Maintain info about created
objects

24

W@12

W

lname “Kn”

W@bd

W

“Ra”lname

numObs 2
Box for W

public class W {
private static int numObs; // number of W objects created

}
To have numObs contain the
number of objects of class W
that have been created, simply
increment it in constructors.

/** Constructor: */
public W(…) {

…
numObs= numObs + 1;

}

07/02/2017

5

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each
of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static final Color black = …;
public static final Color blue = …;
public static final Color cyan = new Color(0, 255, 255);
public static final Color darkGray = …;
public static final Color gray = …;
public static final Color green = …;
…

Class java.awt.Color uses static variables
25

Java application
26

Java application: bunch of classes with at
least one class that has this procedure:

public static void main(String[] args) {
…

}
Type String[]: array of
elements of type String.
We will discuss later

Running the application effectively calls method main

Command line arguments can be entered with args

public class Singleton {
private static final Singleton instance= new Singleton();

private Singleton() { } // ... constructor

public static Singleton getInstance() {
return instance;

}

// ... methods
}

Uses of static variables:
Implement the Singleton pattern

27

Singleton@x3k3

Singleton

instance
Box for

Singleton

Only one Singleton can ever exist.

…

Singleton@x3k3

