
4/15/16

1

Recitation 10

Prelim Review

Big O

See the Study Habits Note @282 on the course Piazza. There
is a 2-page pdf file that says how to learn what you need to
know for O-notation.

Big O definition

 f(n) is O(g(n))

 iff
 There is a positive constant c
 and a real number N such that:
 f(n) ≤ c * g(n) for n ≥ N

N

c * g(n)

f(n)

n Is merge sort O(n3)?

Yes, but not tightest upper bound

Review: Big O
Is used to classify algorithms by how they respond to changes in
input size n.
Important vocabulary:
●  Constant time: O(1)
●  Logarithmic time: O(log n)
●  Linear time: O(n)
●  Quadratic time: O(n2)

Let f(n) and g(n) be two functions that tell how many statements
two algorithms execute when running on input of size n.
f(n) >= 0 and g(n) >= 0.

Review: Informal Big O rules
1.  Usually: O(f(n)) × O(g(n)) = O(f(n) × g(n))

– Such as if something that takes g(n) time for each of f(n) repetitions . . .
 (loop within a loop)

 2. Usually: O(f(n)) + O(g(n)) = O(max(f(n), g(n)))
– “max” is whatever’s dominant as n approaches infinity
– Example: O((n2-n)/2) = O((1/2)n2 + (-1/2)n) = O((1/2)n2)

 = O(n2)

 3. Why don’t logarithm bases matter?

–For constants x, y: O(logx n) = O((logx y)(logy n))

–Since (logx y) is a constant, O(logx n) = O(logy n)

Test will not require
understanding such
rules for logarithms

Review: Big O
1. log(n) + 20 is
2. n + log(n) is
3. n/2 and 3*n are
4. n * log(n) + n is
5. n2 + 2*n + 6 is
6. n3 + n2 is
7. 2n + n5 is

Big O

6

O(log(n)) (logarithmic)
O(n) (linear)
O(n)
O(n * log(n))
O(n2) (quadratic)
O(n3) (cubic)
O(2n) (exponential)

4/15/16

2

Review: Big O examples
1.  What is the runtime of an algorithm that runs insertion sort on an

array O(n2) and then runs binary search O(log n) on that now
sorted array?

2.  What is the runtime of finding and removing the fifth element from a

linked list? What if in the middle of that remove operation we
swapped two integers exactly 100000 times, what is the runtime
now?

3.  What is the runtime of running merge sort 4 times? n times?

Analysis of Algorithms

Binary Search Trees

89

56 98

12 79

80

94

Left child is always smaller than parent
Right child is always larger than parent

Without this node,
the tree would be

complete How would you change the
tree to add the value 37?

Heaps

Array Representation of Binary Heap

1

2 99

4 3

min heap array

? ? ? ? ?

0 1 2 3 4

1

1 2 99 2 99

4 3

4 3

Review: Binary heap

1

2 99

4 3

99

4 1

2 3

min heap max heap
PriorityQueue
●  Maintains max or min of

collection (no duplicates)
●  Follows heap order

invariant at every level
●  Always balanced!
●  worst case:

O(log n) insert
O(log n) update
O(1) peek
O(log n) removal

4/15/16

3

Review: Binary heap

1

2 99

4 3

min heap
How do we insert element 0 into the min
heap?

After we remove the root node, what is the
resulting heap?

 How are heaps usually
represented? If we want the right
child of index i, how do we access it?

Hashing

Review: Hashing

MA NY CA

0 1 2 3 4 5

HashSet<String>

Method Expected
Runtime

Worst
Case

add O(1) O(n)

contains O(1) O(n)

remove O(1) O(n)

load factor, for open addressing:

 number of non-null entries
 --
 size of array

load factor, for chaining:

 size of set
 --
 size of array

If load factor becomes > 1/2, create an
array twice the size and rehash every
element of the set into it, use new array

Review: Hashing

to

be

or

not

that

is

HashMap<String,Integer>

2

2

1

1

1

1

the 1

1 question

MA NY CA

0 1 2 3 4 5

HashSet<String>

Method Expected
Runtime

Worst
Case

add O(1) O(n)

contains O(1) O(n)

remove O(1) O(n)

Review: Hashing

Hash
Function

value int

0 1 2 3 4 5

b

Idea: finding an element in an array takes constant time
when you know which index it is stored in

Collision resolution

Two ways of handling collisions:

1.  Chaining 2. Open Addressing

4/15/16

4

Load factor: b’s saturation

Hash
Function

MA 0

MA NY VA

0 1 2 3 4 5

add(“MA”)

b

Load factor:

Question: Hashing

MA NY VA

0 1 2 3 4 5

b

Using linear probing to resolve collisions,

1.  Add element SC (hashes to 9).
2.  Remove VA (hashes to 3).
3.  Check to see if MA (hashes to 21) is in the set.
4.  What should we do if we override equals()?

Graphs

Question: What is BFS and DFS?

A

1.  Starting from node A, run BFS and DFS to find node Z. What is the order
that the nodes were processed in? Visit neighbors in alphabetical order.

2.  What is the difference between DFS and BFS?
3.  What algorithm would be better to use if our graph were near infinite and

a node was nearby?
4.  Is Dijkstra’s more like DFS or BFS? Why?
5.  Can you run topological sort on this graph?

B

C

E

D

F

Topological ordering

1
2

3

5

4

6

All edges go from a smaller-numbered node to a larger-numbered node.

How can this be useful?

Dijkstra’s Algorithm

1
4

2

5

3

6

5

1
3

2

7

6

8

The nodes are numbered in the order they are visited if we start at 1.

Why are they visited in this order?

