
Recitation 7

Hashing

1

Set

Sets

Set<E>
add(E ob);

remove(E ob);

contains(E ob);

isEmpty()

size()

… (a few more)

Set: collection of distinct objects

2

Implementing a set in an array

b[0..n-1] contains the values in the set

Have to search through the list

linearly to find values

Have to shift all values down

method expected time

add O(n)

contains O(n)

remove O(n)

Sets

VA NY CA

0 1 2 3 4

n 3

b

3

Hashing — an implementation of a Set

Hashing

value int

Idea: Use a hash function to tell where to put a value

b.length

b VA NY CA

0 1 2 3 4

Possible hash function for an object: its address in memory

(not always good, explain later)

Hash function

mod b.length

4

Hashing

Hashing

add(“VA”) can be done using

VA b

b.length 0 1 2 3 4 5

k= Math.abs(hashCode(“VA”)) % b.length;

if (b[k] == null) b[k]= “VA”;

Suppose k is 5. This puts “VA” in b[5]

If b[k] != null?

Handle that later

5

Hashing

Hashing

add(“NY”)

VA
b

b.length 0 1 2 3 4 5

k= Math.abs(hashCode(“NY”)) % b.length;

if (b[k] == null) b[k]= “NY”;

Suppose k is 4. This puts “NY” in b[4]

NY

6

Collision Resolution

7

Collision resolution

Hashing

add(“VT”)

VA
b

b.length 0 1 2 3 4 5

k= Math.abs(hashCode(“VT”)) % b.length;

if (b[k] == null) b[k]= “VT”;

Suppose k is 4. Can’t place “VT” in b[4] because “NY” is already there

NY

Two ways to solve collisions: Open addressing and chaining.

Do open addressing first

8

Open addressing: linear probing

Hashing

add(“VT”). Suppose “VT” hashes to 4

VA
b

b.length 0 1 2 3 4 5

Search in successive locations (with wraparound) for

the first null element, and place “VT” there.

NY

Here, look in b[4], b[5], b[0], and place “VT” in b[0].

VT

9

Open addressing: linear probing

Hashing

add(“MA”). Suppose “MA” hashes to 4

VA
b

b.length 0 1 2 3 4 5

NY

Here, look in b[4], b[5], b[0], b[1] and place “MA” in b[1].

VT MA

This took 4 probes to find a null element.

“probe”: a test of one array element

10

Open addressing: linear probing

Hashing

VA
b

b.length 0 1 2 3 4 5

NY

basic code for add(String s):

 int k= what s hashed to;

 while (b[k] != null && !b[k].equals(s))

 { k= (k+1) % b.length(); }

 if (b[k] = = null) { b[k]= s; } // if not null, s already in set

VT MA

11

Making linear probing take

expected constant time

Hashing

Load factor lf: (# non-null elements) / b.length

b

b.length 0 1 2 3 4 5

VT VA NY MA lf = 4 / 6

Under certain assumptions about the hash

function, the average number of probes used

to add an element is 1 / (1 – lf)

Somebody proved:

12

Making linear probing take

expected constant time

Hashing

Under certain assumptions about the hash function, the

average number of probes to add an element is 1 / (1 – lf)

Somebody proved:

So if lf ≤ ½ , meaning at least half the elements are null,

then the average number of probes is ≤ 1/(1/2) = 2.

WOW! Make sure at least half the elements are null and

expect no more than two probes!!! How can that be?

13

Making linear probing take

expected constant time

Hashing

Load factor lf: (# non-null elements) / b.length

b

b.length 0 1 2 3 4 5

VA MA

If at least half the elements are null, expect no

more than two probes !!!

Here’s insight into it. Suppose half the elements are null. Then,

half the time, you can expect to need only 1 probe.

VT

Proof outside

scope of 2110

14

Rehash: If the load factor becomes ≥ ½

Hashing

If the load factor becomes ≥ ½, do the following:

1. Create a new empty array b1 of size 4*b.length

2. For each set element that is in b, hash it into array b1.

3. b= b1; // so from now on the new array is used

Suppose size of array goes from n to 4n. Then, can add more

than n values before this has to be done again.

We can show that this does not increase the expected run

time. We “amortize” this operation over the add operations

that created the set.

15

What does “amortize” mean?

Hashing

We bought a machine that makes fizzy water –adds fizz to

plain water. Now, we don’t have to buy fizzy water by the

bottle. The machine cost $100.

Use the machine to make one glass of fizzy water, that glass

cost us $100.00.

Make 100 glasses of fizzy water? Each glass cost us $1.00.

Make 1,000 glasses? Each glass cost us10 cents.

I are amortizing the cost of the machine over the use of the

machine, over the number of operations “make a glass …”.

16

Deleting an element from the set

Hashing

b

b.length 0 1 2 3 4 5

VT VA NY MA

Does set contain “MA”?

“MA” hashes to 4. After probes of b[4], b[5], b[0], b[1],

we say, yes, “MA’ is in the set.

17

Deleting an element from the set

Hashing

b

b.length 0 1 2 3 4 5

VT VA NY MA

Does set contain “MA”?

“MA” hashes to 4. After probes of b[4], b[5], b[0], b[1],

we say, yes, “MA’ is in the set.

Now suppose we delete “VA” from the set, by setting b[5] to

null.

Now ask whether the set contains “MA”. Two probes say no,

because the second probe finds null!!!

18

Deleting an element from the set

Hashing

b

b.length 0 1 2 3 4 5

VT VA NY MA

Therefore, we can’t delete a value from the set by setting

its array element to null. That messes up linear probing.

Instead, in Java, use an inner class for the array elements,

with two fields:

 1. String value; // the value, like “VT”

 2. boolean isInSet; // true iff value is in the set

19

Deleting an element from the set

Hashing

b

b.length 0 1 2 3 4 5

VT VA NY MA

Instead, in Java, use an inner class for the array elements,

with two fields:

 1. String value; // the value, like “VT”

 2. boolean isInSet; // true iff value is in the set

Above: red string means its isInSet field is true.

To delete “VA”, set its isInSet field to false

VA

20

Inner class HashEntry

class HashSet<E> {

 LinkedList<HashEntry<E>>[] b;

 private class HashEntry<E> {

 private E value;

 private boolean isInSet;

 }

}

inner class to contain value and whether it is in the set

Class is private ---the user knows nothing about it

Collisions:

Chaining

21

Summary for open addressing –linear probing

1. Each non-null b[i] contains an object with two fields: a value and

boolean variable isInSet.

2. add(e). Hash e to an index and linear probe. If null was found, add

e at that spot. If e was found, set its isInSet field to true.

If load factor >= ½, move set elements to an array double the size.

3. Remove(e). Hash e to an index and linear probe. If null was found,

do nothing. If e was found, set its isInSet field to false.

4. Contains(e). Hash e to an index and linear probe. If e was found

and its isInSet field is true, return true; otherwise, return false.

DEMO. We have a complete implementation of this.

22

Hash Functions
Class Object contains a function hashCode().

The value of C.hashCode() is the memory address where

the object resides.

You can override this function in any class you write. Later

slides discuss why one would do this.

For primitive types, you have to write your own hashCode

function.

On the next slides, we discuss hash functions.

23

Requirements

Hash Functions

Hash functions MUST:

● have the same hash for equal objects
○ In Java: if a.equals(b), then

a.hashCode() == b.hashCode()

○ if you override equals and plan on using object in a
HashMap or HashSet, override hashCode too!

● be deterministic
○ calling hashCode on the same object should return

the same integer

■ important to have immutable values if you

override equals!
24

Good hash functions

● As often as possible, if !a.equals(b), then a.hashCode() !=

b.hashCode()

○ this helps avoid collisions and clustering

● Good distribution of hash values across all possible keys

● FAST. add, contains, and remove take time proportional

to speed of hash function

A bad hash function won’t break a hash set but it could

seriously slow it down

Hash Functions

25

String.hashCode()

Don’t hash long strings, not O(1) but O(length of string)!

/** Return a hash code for this string.

 * Computes it as

 * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

 * using int arithmetic.

 */

public int hashCode() { ... }

Hash Functions

26

Designing good hash functions

class Thingy {

 private String s1, s2;

 public boolean equals(Object obj) {

 return s1.equals(obj.s1) &&

 s2.equals(obj.s2);

 }

public int hashCode() {

 return 37 * s1.hashCode() + 97 * s2.hashCode();

}

}

Hash Functions

27

Collisions: Chaining

an alternative to open addressing (probing)

28

Chaining definition

CA

NY VA

0 1 2 3 4 5

Collisions:

Chaining

Each b[k] contains

a linked list of

values in the set

that hashed to k.

b[5] is an

empty list

add(e): hash e to some k. If e is not on linked list b[k], add it to the list

remove(e): hash e to some k. If e is on linked list b[k], remove it

You can figure out other operations yourself.

29

Chaining

CA

NY VA

0 1 2 3 4 5

Collisions:

Chaining

Each b[k] contains

a linked list of

values in the set

that hashed to k. Load factor is

3/6 = 1/2

The load factor: (number of values in list) / size of array

It must be kept under ½, as with open addressing

30

Linear probing

versus

quadratic probing

31

Linear vs quadratic probing

linear probing:

search the array in

order:

i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

quadratic probing:

search the array in

nonlinear sequence:

i, i+12, i+22, i+32 . . .

For quadratic probing, the

size of the array should

be a prime. Someone

proved that then, every

single array element will

be covered.

Collisions: Open Addressing

32

Why use quadratic probing

linear probing:

i, i+1, i+2, i+3 . . .

Collisions can lead to clustering: many full

elements in a row. Quadratic probing

spreads the values out more, leading to

less clustering than with linear probing.

quadratic probing:

i, i+12, i+22, i+32 . . .

Collisions: Open Addressing

33

Big O!

34

Runtime analysis

Big O of Hashing

Open Addressing Chaining

Expecte

d

O(hash function)
(since load factor

kept < ½)

O(hash function)
(since load factor

kept < ½)

Worst

O(n)
(no null between

values)

O(n)
(all values in one

linked list)

35

Amortized runtime

Big O of Hashing

Insert n items: n + 2n (from copying) = 3n inserts → O(3n) → O(n)

Amortized to constant time per insert

Copying Work

Everything has just been copied n inserts

Half were copied in previous doubling n/2 inserts

Half of those were copied in doubling

before previous one

n/4 inserts

... ...

Total work n + n/2 + n/4 + … ≤ 2n

36

Limitations of hash sets

1. Due to rehashing, adding elements may take O(n)

a. not always ideal for time-critical applications

1. No ordering among elements, very slow to find nearby elements

Alternatives (out of scope of the course):

1. hash set with incremental resizing prevents O(n) rehashing

1. self-balancing binary search trees are worst case O(log n) and

keep the elements ordered

Hash Functions

37

Hashing Extras

Hashing has wide applications in areas such as security

● cryptographic hash functions are ones that are very hard

to invert (figure out original data from hash code),

changing the data almost always changes the hash, and

two objects almost always have different hashes

● md5 hash: `md5 filename` in Terminal

Hash Functions

38

