
Recitation 5

Enums and

The Java Collections classes/interfaces

1

How do we represent . . .

Enums

● Suits - Clubs, Spades, Diamonds, Hearts

● Directions - North, South, East, West

● Days of week - Monday, Tuesday . . .

● Planets - Mercury, Venus, Earth . . .

Other small sets of values that do not change

2

Using constants

Enums

public class Suit {

 public static final int CLUBS = 0;

 public static final int SPADES = 1;

 public static final int DIAMONDS = 2;

 public static final int HEARTS = 3;

}

Problems:

● no type checking

● readability int getSuit() {...}

void setSuit(int suit) {...}

3

Objects as constants

Enums

public class Suit {

public static final Suit CLUBS = new Suit();

public static final Suit SPADES = new Suit();

public static final Suit DIAMONDS = new Suit();

public static final Suit HEARTS = new Suit();

private Suit() {}

}

no new Suits can be created

cannot modify Suit objects

Suit v; … if (v == Suit.CLUBS) { …} can use ==

4

Enum declaration

Enums

public enum Suit {CLUBS, SPADES, DIAMONDS, HEARTS};

static final variables

of enum Suit

can be any access modifier

name of enum

new keyword

5

About enums

Enums

1. Can contain methods, fields, constructors
 Suit.HEARTS.getColor();

1. Suit’s constructor is private!

 Cannot instantiate except for initial constants

1.Suit.values() returns a Suit[] of

constants in enum

6

Demo: Enums in action

Look at the Suit enum.

Create a class PlayingCard and a class Deck.

What would be the fields for a PlayingCard object?

Enums

7

Enum odds and ends

Enums

1. Suit is a subclass of java.lang.Enum

2. ordinal() returns position in list (i.e. the order it was declared)

a. Suit.CLUBS.ordinal() == 0

3. enums automatically implement Comparable

a. Suit.CLUBS.compareTo(Suit.HEARTS) uses the ordinals

for Clubs and Hearts

4. toString()of Suit.CLUBS is “CLUBS”

a. you can override this!

8

Enum odds and ends

Enums

5. switch statement
 Suit s = Suit.CLUBS;

 switch(s) {

 case CLUBS:

 case SPADES:

 color= “black”; break;

 case DIAMONDS:

 case HEARTS:

 color= “red”; break;

}

s == Suit.CLUBS is true

switch

statements are

fall through!

break keyword is

necessary.

9

Collections and Maps

The Collections classes and interfaces are

designed to provide implementations of

• bags (a.k.a. multiset – sets with repeated values)

• sets (and sorted sets)

• lists

• stacks

• queues

• maps (and sorted maps)

10

You will see in later

assignments how easy

it is to use these

Power of inheritance and interfaces

Collections and

Map

Format of ArrayList object

Object

AbstractCollection<E>

AbstractList<E>

ArrayList<E>

Collection<E>

Iterable<E>

List<E>

11

Important interfaces

Collections and

Map

Collection<E>
 add(E);

 contains(Object);

 isEmpty();

 remove(Object);

 size();

 ...

List<E>
 get(int);

 indexOf(int);

 add(int,E);

 ...

Set<E>

No new methods in Set<E>,

just changes specifications

Map<K,V>
 put(K,V);

 get(Object);

12

Important classes

Collections and

Map

Collection<E>

List<E> Set<E>

LinkedList<E>

HashSet<E>

ArrayList<E>

HashMap<K,V>

Map<K,V>

13

Queues? Stacks?

Collections and

Map

Collection<E>

Queue<E>

LinkedList<E>

Deque<E>

“Double Ended

Queue”

ArrayDeque<E>

14

Iterating over a HashSet or ArrayList

15

HashSet<E>@y2

HashSet<E>

Object

Fields contain

a set of objects

add(E)

contains(Object) size()

remove(Object) …

s HashSet<E>@y2

HashSet<E>

HashSet<E> s= new HashSet<E>();

… store values in the set …

for (E e : s) {

 System.out.println(e);

}

Body of loop is executed once with

e being each element of the set.

Don’t know order in which set

elements are processed

Collections problems

Collections and

Map

1. Remove duplicates from an array

2. Find all negative numbers in array

3. Create ransom note

4. Implement a Stack with a max API

5. Braces parsing

16

Collections problems

Collections and

Map

Complete

Integer[] removeDuplicates(int[])

Remove all duplicates from an array of

integers.

Very useful HashSet method:

hs.toArray(new Integer[hs.size()]);

17

Collections problems

Collections and

Map

Find Negative Numbers
Find all negative numbers in array and return an array with

those integers

Very useful ArrayList method:

lst.toArray(new Integer[lst.size()]);

18

Collections problems

Collections and

Map

Create Ransom Note
Given a note (String) that you would like to create and a

magazine (String), return whether you can create your note

from the magazine letters.

19

Collections problems

Collections and

Map

Implement a Stack<E> with a max() function

in O(1) time

No matter how full the stack is, the max function should be

in constant time. (ie you should not iterate through the

Linked List to find the maximum element)

20

Collections problems

Collections and

Map

Braces parsing in O(n) time

Return whether a String has the right format of

square brackets and parenthesis.

e.g.

“array[4] = (((new Integer(3))));” <- is true

“() []]” <- is false

“)(” <- is false

“ ([)] ” <- is false

21

Collections problems

Collections and

Map

Print a binary tree in level-order

1

2 3

4 5

Output: 1 2 3 4 5 6

Challenge Problem

Output:

1

2 3

4 5 6 6

22

