

LOUSY WAY TO COMPUTE: O($\left.2^{\wedge} n\right)$

```
/** Return fib(n). Precondition: \(\mathrm{n} \geq 0\).*/
public static int \(\mathrm{f}(\) int n\()\) \{
    if \((\mathrm{n}<=1)\) return n ;
    return \(\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)\);
\}
                    20
19
18
\(\begin{array}{lllllll}17 & 16 & 16 & 15 & 16 & 15 & 15\end{array} 14\)
```

Info about optional final on course website

We post course grade as soon after 10 May as possible.
You answer quiz on CMS: Accept letter grade or take final?
Walk into final room? You must complete the final.
Take only 1 prelim? Must take final.
Final may lower (rarely) or raise course grade.
Conflict? Email Megan Gatch mlg34@cornell.edu
Quiet room / extra time. Email Megan Gatch
Review session 1: Java. TBA
Data structures, algorithms, concurrency. TBA

Fibonacci function (year 1202)

```
fib(0)=0
fib(1)=1
fib(n)}=fib(n-1)+fib(n-2) for n\geq2
/** Return fib(n). Precondition: n\geq0.*/
public static int f(int n) {
    if (n<=1) return n;
    return f(n-1)+f(n-2);
}
0,1,1,2,3,5,8,13,21,\ldots
```

Fibonacci function (year 1202)

The artichoke sprouts its leafs at a constant amount of rotation: 222.5 degrees (in other words the distance between one leaf and the next is 222.5 degrees). You can measure this rotation by dividing 360 degrees (a full spin) by the inverse of the golden ratio. We see later how the golden ratio is connected to fibonacci.
topones.weebly.com/1/post/2012/10/the-artichoke-and-fibonacci.html

Blooms: strobe-animated sculptures

Recursion for fib: $f(n)=f(n-1)+f(n-2)$
$T(0)=a \quad$ "Recurrence relation" for the time
$T(1)=a$
$T(n)=a+T(n-1)+T(n-2)$
We can prove that $T(n)$ is $O\left(2^{n}\right)$
:---
Proof by induction is not covered in this course. But we can give you an idea about why $T(n)$ is $O\left(2^{n}\right)$
$T(n)<=c * 2^{n}$ for $n>=N$

Recursion for fib: $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$
$T(0)=\mathrm{a}$
$\mathrm{T}(1)=\mathrm{a}$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)$
$\mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0}$
$\mathrm{~T}(1)=\mathrm{a} \leq \mathrm{a} * 2^{1}$
$\mathrm{~T}(2)=\mathrm{a} \leq \mathrm{a} * 2^{2}$

$$
\begin{aligned}
& \hline \mathrm{T}(\mathrm{n})<=\mathrm{c}^{*} 2^{\mathrm{n}} \text { for } \mathrm{n}>=\mathrm{N} \\
& =\mathrm{T}(3) \\
& \quad<\text { Definition }> \\
& \mathrm{a}+\mathrm{T}(2)+\mathrm{T}(1) \\
& \leq \quad<\text { look to the left }> \\
& \quad \mathrm{a}+\mathrm{a} * 2^{2}+\mathrm{a} * 2^{1} \\
& =\quad<\text { arithmetic }> \\
& \mathrm{a} *(7) \\
& \leq \quad<\text { arithmetic }> \\
& \\
& \mathrm{a} * 2^{3}
\end{aligned}
$$

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

$$
\begin{aligned}
& T(0)=a \\
& T(1)=a \\
& T(n)=a+T(n-1)+T(n-2) \\
& T(0)=a \leq a * 2^{0} \\
& T(1)=a \leq a * 2^{1}
\end{aligned}
$$

$$
\mathrm{T}(\mathrm{n})<=\mathrm{c}^{*} 2^{\mathrm{n}} \text { for } \mathrm{n}>=\mathrm{N}
$$

$$
\mathrm{T}(2)
$$

$=\quad<$ Definition $>$ $a+T(1)+T(0)$
$\leq \quad<$ look to the left $>$ $a+a * 2^{1}+a * 2^{0}$
$=\quad$ <arithmetic $>$ a* (4)
$=\quad$ <arithmetic $>$ $a * 2^{2}$

Linear algorithm to calculate fib(n)
Can prove that Fibonacci recurrence is $\mathrm{O}\left(\varphi^{\mathrm{n}}\right)$

We won't prove it.
Requires proof by induction
Relies on identity $\varphi^{2}=\varphi+1$

The golden ratio

$a>0$ and $b>a>0$ are in the golden ratio if
$(a+b) / a=a / b \quad$ call that value φ
$\varphi^{2}=\varphi+1 \quad$ so $\varphi=(1+\operatorname{sqrt}(5)) / 2=1.618 \ldots$

b

The Parthenon

ratio of sum of sides to longer side
$=$
ratio of longer side to shorter side

```
/** Return fib(n), for n >= 0. */
public static int f(int n) {
    if (n<= 1) return 1;
    int p=0; int c= 1; int i=2;
    // invariant: p = fib(i-2) and c=fib(i-1)
    while (i<n) {
        int fibi=c + p; p=c; c= fibi;
        i= i+ l;
    }
    return c + p;
}
```

Logarithmic algorithm!
Gries and Levin/ Computing a Fibonacci number in log time. IPL 2 (October 1980), 68-69.

Constant-time algorithm!

Define $\phi=(1+\sqrt{ } 5) / 2 \quad \phi^{\prime}=(1-\sqrt{ } 5) / 2$

The golden ratio again.

Prove by induction on n that
$f n=\left(\phi^{n}-\phi^{\prime n}\right) / \sqrt{5}$
We went from $O\left(2^{n}\right)$ to $O(1)$

