
Lecture 23 – CS2110 – Spring 2016

RACE CONDITIONS & SYNCHRONIZATION

Announcements

¨  Recitation this week: Help on A8. Bring laptop (if
you want). Ask questions. Get individual help. Ask
for an explanation of some aspect for whole class.

2

Recap

¨  A “race condition” arises if two threads try to read and
write the same data

¨  Might see the data in the middle of an update in a
inconsistent stare”
¤ A “race condition”: correctness depends on the update

racing to completion without the reader managing to
glimpse the in-progress update

¤ Synchronization (also known as mutual exclusion) solves this

3

Java Synchronization (Locking)
4

private Stack<String> stack= new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Java Synchronization (Locking)
5

public void doSomething() {
 synchronized (this) {
 ...
 }
}

public synchronized void doSomething() {
 ...
}

• You can lock on any object, including this

Above is syntactic sugar for the stuff below.
They mean the same thing

6

Deadlock involve cycles:
Simple solution to
deadlock:
Acquire resources in a
certain order:

Pick up smaller fork first
 1. think
 2. eat (2 forks)
eat is then:
 pick up smaller fork
 pick up bigger fork
 pick up food, shovel it
 put down bigger fork
 put down smallerfork

1

2

4

3

5

notify(), notifyAll(), wait(), wait(n)

There are times when a method in a synchronized block has to
relinquish the lock and acquire it later.

Example: It needs to get an element from a set and the set is empty.

Example: It needs to add something to a set that can’t hold any more;
must wait until something is deleted from the set.

For these reasons, these methods are in class Object:

 notify(), notifyAll(), wait(), wait(n)

7

About wait(), wait(n), notify(), notifyAll()
8

A thread that holds a lock on object OB
and is executing in its synchronized code
can make (at least) these calls.

1.  wait(); It is put into set 2. Another

thread from set 1 gets the lock.
2.  wait(n); It is put into set 2 and stays

there for at least n millisecs. Another
thread from set 1 gets the lock.

3.  notify(); Move one “possible” thread
from set 2 to set 1.

4.  notifyAll(); Move all “threads” from set
2 to set 1.

Two sets:

1. Runnable
threads: Threads
waiting to get the
OB lock.

2. Waiting
threads: Threads
that called wait
and are waiting to
be notified

Important example: bounded buffer

We illustrate these methods using an important example, which you
should study and understand. Bounded Buffer

Example: A baker produces breads and puts them on the shelf, like a
queue. Customers take them off the shelf.

¨  Threads A: produce loaves of bread and put them in the queue

¨  Threads B: consume loaves by taking them off the queue
¨  This is the produce/consumer model, using a bounded buffer, the

shelf (which can contain at most 20 (say) loaves of bread).

9

producer shelves consumer

Array implementation of a queue of max size 6

Array b[0..5]

10

 0 1 2 3 4 5 b.length

push values 5 3 6 2 4

5 3 6 2 4 b
For later purposes,
we show how to implement
a bounded queue —one
with some maximum size—
in an array.

A neat little implementation!
We give you code for it on
course website.

Array implementation of a queue of max size 6

Array b[0..5]

11

 0 1 2 3 4 5 b.length

n = 6

push values 5 3 6 2 4

pop, pop, pop

5 3 6 2 4 b

Array implementation of a queue of max size 6

Array b[0..5]

12

 0 1 2 3 4 5 b.length

push values 5 3 6 2 4

pop, pop, pop

push value 1 3 5

2 4 1 3 5 Values wrap around!! b

Bounded buffer
13 /** Implement a bounded-size queue in an array */

public class ArrayQueue<E> {
 int[] b; // The n elements of the queue are in
 int n; // b[h], b[(h+1) % b.length, ... b[(h+n-1) % b.length]
 int h; // 0 <= h < b.length
 public ArrayQueue(int n) {b= new int[n];}
 public void put(E e) { //Add e to the queue (error if full)
 b[(h+n) % b.length]= e; n= n+1;
 }
 public int get() { // remove head of queue and return it
 int e= b[h]; // (error if empty)
 h= (h+1) % b.length; n= n-1;
 return e;
 }}

Also other methods,
like isEmpty(), isFull()

Bounded Buffer
14

/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq

 /** Constructor: empty bounded buffer of max size n*/
public BoundedBuffer(int n) {
 aq= new ArrayQueue(n);
}

}

Separation of concerns:
1.  How do you implement a queue in an array?
2.  How do you implement a bounded buffer, which

allows producers to add to it and consumers to
take things from it, all in parallel?

Bounded Buffer
15

/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq

/** Put v into the bounded buffer. */
public synchronized void produce(int v) {
 while (aq.isFull()) { }; // Wait until not full
 aq.put(v);
 this.notifyAll(); // Signal: not empty.
}

}

 this.wait()

Problem with the above. The wait may throw
an InterruptedException. The thread was interrupted.
Need a throws clause OR … (next slide)

Bounded Buffer
16

/** An instance maintains a bounded buffer of limited size */
class BoundedBuffer {
 ArrayQueue aq; // bounded buffer is implemented in aq

/** Put v into the bounded buffer. */
public synchronized void produce(int v) {
 while (aq.isFull()) {
 try { wait(); } // wait until not full
 catch (InterruptedException e) {}
 }
 aq.put(v);
 this.notifyAll(); // Signal: not empty
}

}
Not good solution. Good solution beyond 2110 scope. See
http://www.ibm.com/developerworks/library/j-jtp05236/

Bounded Buffer
17 class BoundedBuffer {

 ArrayQueue aq;
…

/** Remove first element from bounded buffer and return it. */
public synchronized int consume() {
 while (aq.isEmpty()) {
 try {wait();} // Wait until not empty
 catch (InterruptedException e) {}
 }
 int item= aq.get();
 this.notifyAll(); // Signal: not full
 return item;
}

}

Things to notice

¨  Use a while loop because we can’t predict exactly
which thread will wake up “next”

¨  wait() waits on the same object that is used for
synchronizing (in our example, this, which is this
instance of the bounded buffer)

¨  Method notify() wakes up one waiting thread,
notifyAll() wakes all of them up

18

In an ideal world…

¨  Bounded buffer allows producer and consumer to
run concurrently, with neither blocking
¤ This happens if they run at the same average rate
¤ … and if the buffer is big enough to mask any brief

rate surges by either of the two

¨  But if one does get ahead of the other, it waits
¤ This avoids the risk of producing so many items that we

run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

19

Should one use notify() or notifyAll()

¨  Lots of discussion on this on the web!
stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again

¨  notify() takes less time than notifyAll()

¨  In consumer/producer problem, if there is only one kind of
consumer (or producer), probably notify() is OK.

¨  But suppose there are two kinds of bread on the shelf —and
one still picks the head of the queue, if it’s the right kind of
bread. Then, using notify() can lead to a situation in which no
one can make progress. We illustrate with a proje in Eclipse,
which we will put on the course website.

20

Another example: simple counter
21

/** An instance is a counter; can be  
 incremented */
class Counter {
 private int counter= 0;

 /** increment counter and return it */ 
 public int increment() {
 return counter= counter + 1;
 }
}

Using synchronization
22

class Counter {
 private int counter= 0;

 /** increment counter and return it */  
 public synchronized int increment() {
 return counter= counter + 1;
 }
}

Using Concurrent Collections...
23

Java has a bunch of classes to make synchronization
easier.

It has an Atomic counter.

It has synchronized versions of some of the Collections
classes

Using Concurrent Collections...
24

import java.util.concurrent.atomic.*;

public class Counter {
 private static AtomicInteger counter;

 public Counter() {
 counter= new AtomicInteger(0);
 }

 public static int getCount() {
 return counter.getAndIncrement();
 }
}

Summary
25

Use of multiple processes and multiple threads within each
process can exploit concurrency

n  may be real (multicore) or virtual (an illusion)
Be careful when using threads:

n  synchronize shared memory to avoid race conditions
n  avoid deadlock

Even with proper locking concurrent programs can have other
problems such as “livelock”
Serious treatment of concurrency is a complex topic (covered in
more detail in cs3410 and cs4410)
Nice tutorial at
http://docs.oracle.com/javase/tutorial/essential/concurrency/
index.html

Conference on Jay Misra’s retirement
26

Gries was at a conference in Austin, Texas, in honor of the
retirement of Jay Misra, a professor there.
Two days of 15-minute talks by well-known computer scientists
(including Tony Hoare), dealing mainly with Jay’s main interests:

n  Concurrency
n  Correctness proofs
n  Programming methodology

Both theory and practice

Major in CS and you will hear more about the problems in these
area. Do you PhD, and you may work in these areas and help
solve the problems.

