
CONCURRENCY 2 

CS 2110 – Spring 2016 



Consistency 

x = 2; 

y = 3; 

a = y > 0 ? x : 0; 

System.out.println(a); 

Thread 1 Thread 2 

x = 1; 

y = -1; 

What is printed? 

0, 1, and 2 can be printed! 



Consistency 

Write 2 to x in local cache 

Write 3 to y in local cache 

3 gets pushed to y in memory 

 

 

 

 

2 gets pushed to x in memory 

 

 

 

Read 3 from y in memory 

Read 1 from x in memory 

Write 1 to a 

Print 1 

Thread 1 on Core 1 Thread 2 on Core 2 

Not sequentially consistent! 



Harsh Reality 

 Sequential Consistency 

 There is an interleaving of the parallel operations that 

explains the observations and events 

 Currently unknown how to implement efficiently 

 Volatile keyword 

 Java fields can be declared volatile 

 Writing to a volatile variable ensures all local changes 

are made visible to other threads 

 x and y would have to be made volatile to fix code 



Atomicity 

x++; x++; 

Thread 1 Thread 2 

volatile int x = 0; 

What is the value of x? 

Can be both 1 and 2! 



java.util.concurrent.atomic 

 class AtomicInteger, AtomicReference<T>, … 

 Represents a value 

 method set(newValue) 

 has the effect of writing to a volatile variable 

 method get() 

 returns the current value 

 effectively an extension of volatile 

 but what about atomicity??? 



Compare and Set (CAS) 

 boolean compareAndSet(expectedValue, newValue) 

 If value doesn’t equal expectedValue, return false 

 if equal, store newValue in value and return true 

 executes as a single atomic action! 

 supported by many processors 

 without requiring locks! 

AtomicInteger n = new AtomicInteger(5); 

n.compareAndSet(3, 6); // return false – no change 

n.compareAndSet(5, 7); // returns true – now is 7 



Incrementing with CAS 

/** Increment n by one. Other threads use n too. */ 

public static void increment(AtomicInteger n) { 

 int i = n.get(); 

 while (n.compareAndSet(i, i+1)) 

  i = n.get(); 

} 

 

// AtomicInteger has increment methods doing this 



Lock-Free Data Structures 

 Usable by many concurrent threads 

 using only atomic actions – no locks! 

 compare and swap is god here 

 but it only atomically updates one variable at a time! 

Let’s implement one! 


