CONCURRENCY 2

Consistency

Thread 2

X X
|
w b

a=y>0¢2x:0;

System.out.printin(a);

we

What is printed?

O, 1, and 2 can be printed!

Consistency
N

Thread 1 on Core 1 Thread 2 on Core 2

Write 2 to x in local cache

Write 3 to y in local cache

3 gets pushed to y in memory
Read 3 from y in memory
Read 1 from x in memory
Write 1 to a
Print 1

2 gets pushed to x in memory

Not sequentially consistent!

Harsh Reality

Sequential Consistency

There is an interleaving of the parallel operations that
explains the observations and events

Currently unknown how to implement efficiently

Volatile keyword
Java fields can be declared volatile

Writing to a volatile variable ensures all local changes
are made visible to other threads

x and y would have to be made volatile to fix code

Atomicity "lasy, y
®)

! !S
(I/-e

volatile int x = O;

What is the value of x2

Can be both 1 and 2!

java.util.concurrent.atomic

class Atomiclnteger, AtomicReference<T>, ...

Represents a value
method set(newValue)

has the effect of writing to a volatile variable
method get()

returns the current value
effectively an extension of volatile

but what about atomicity?22¢?

Compare and Set (CAS)

boolean compareAndSet(expectedValue, newValue)
If value doesn’t equal expectedValue, return false
if equal, store newValue in value and return true
executes as a single atomic action!
supported by many processors

without requiring locks!

Atomicinteger n = new Atomiclnteger(5);
n.compareAndSet(3, 6); // return false — no change
n.compareAndSet(5, 7); // returns true — now is 7

Incrementing with CAS
S 1 —
/** Increment n by one. Other threads use n too. */
public static void increment(Atomiclnteger n) {
int i = n.get();
while (n.compareAndSet(i, i+1))
i = n.get();

// Atomiclnteger has increment methods doing this

Lock-Free Data Structures
B

11 Usable by many concurrent threads
71 using only atomic actions — no locks!
1 compare and swap is god here

71 but it only atomically updates one variable at a time!

Let’s implement onel

