
4/27/2016

1

CONCURRENCY 2

CS 2110 – Spring 2016

Consistency

x = 2;

y = 3;

a = y > 0 ? x : 0;

System.out.println(a);

Thread 1 Thread 2

x = 1;

y = -1;

What is printed?

0, 1, and 2 can be printed!

Consistency

Write 2 to x in local cache

Write 3 to y in local cache

3 gets pushed to y in memory

2 gets pushed to x in memory

Read 3 from y in memory

Read 1 from x in memory

Write 1 to a

Print 1

Thread 1 on Core 1 Thread 2 on Core 2

Not sequentially consistent!

Harsh Reality

 Sequential Consistency

 There is an interleaving of the parallel operations that

explains the observations and events

 Currently unknown how to implement efficiently

 Volatile keyword

 Java fields can be declared volatile

 Writing to a volatile variable ensures all local changes

are made visible to other threads

 x and y would have to be made volatile to fix code

Atomicity

x++; x++;

Thread 1 Thread 2

volatile int x = 0;

What is the value of x?

Can be both 1 and 2!

java.util.concurrent.atomic

 class AtomicInteger, AtomicReference<T>, …

 Represents a value

 method set(newValue)

 has the effect of writing to a volatile variable

 method get()

 returns the current value

 effectively an extension of volatile

 but what about atomicity???

4/27/2016

2

Compare and Set (CAS)

 boolean compareAndSet(expectedValue, newValue)

 If value doesn’t equal expectedValue, return false

 if equal, store newValue in value and return true

 executes as a single atomic action!

 supported by many processors

 without requiring locks!

AtomicInteger n = new AtomicInteger(5);

n.compareAndSet(3, 6); // return false – no change

n.compareAndSet(5, 7); // returns true – now is 7

Incrementing with CAS

/** Increment n by one. Other threads use n too. */

public static void increment(AtomicInteger n) {

 int i = n.get();

 while (n.compareAndSet(i, i+1))

 i = n.get();

}

// AtomicInteger has increment methods doing this

Lock-Free Data Structures

 Usable by many concurrent threads

 using only atomic actions – no locks!

 compare and swap is god here

 but it only atomically updates one variable at a time!

Let’s implement one!

