
 THREADS & CONCURRENCY

Lecture 23– CS2110 – Spring 2016

BRING YOUR CORNELL ID TO
THE PRELIM.

You need it to get in

Announcements

¨  Prelim 2 is next Tonight BRING YOUR CORNELL ID!
¨  A7 is due Thursday. Our Heap.java: on Piazza (A7 FAQs)

¨  A8. Firm deadline, no late ones permitted. We have to get it
graded and get letter grades calculated immediately so you
can determine whether to take the final. Final: 17 May

¨  For A8. Get the simplest solution correct on both parts before
attempting to improve!

¨  Cheating cases found and we are processing them. Please
don’t cheat!

¨  Two versions of dfs (different specs) on Piazza Supplementary
material note

2

Today: New topic: concurrency

¨  Modern computers have “multiple cores”
¤  Instead of a single CPU (central processing unit) on the chip

5-10 common. Intel has prototypes with 80!

¨  We often run many programs at the same time

¨  Even with a single core, your program may have more than one
thing “to do” at a time
¤ Argues for having a way to do many things at once

3

Why multicore?

¤ Moore’s Law: Computer speeds and memory densities
nearly double each year

4

But a fast computer runs hot

¨  Power dissipation rises as square of the clock rate
¨  Chips were heading toward melting down!
¨  Multicore: with four

CPUs (cores) on one chip,
even if we run each at half
speed we can perform more
overall computations!

5

Programming a Cluster...
6

• Sometimes you want to write a
program that is executed on
many machines!

• Atlas Cluster (at Cornell):

• 768 cores

• 1536 GB RAM

• 24 TB Storage

• 96 NICs (Network Interface
 Controller)

Many processes are executed
simultaneously on your computer

7

• Operating system provides support for multiple
“processes”

• Usually fewer processors than processes

• Processes are an abstraction:
at hardware level, lots of multitasking

– memory subsystem
– video controller
– buses
– instruction prefetching

Part of Activity Monitor in Gries’s laptop
8

>100 processes are competing for time. Here’s some of them:

Concurrency

¨  Concurrency refers to a single program in which several
processes, called threads, are running simultaneously
¤  Special problems arise
¤  They see the same data and hence can interfere with each

other, e.g. one process modifies a complex structure like a
heap while another is trying to read it

¨  CS2110: we focus on two main issues:
¤  Race conditions
¤ Deadlock

9

Race conditions

¨  A “race condition” arises if two or more processes access the
same variables or objects concurrently and at least one does
updates

¨  Example: Processes t1 and t2 x= x + 1; for some static
global x.

 Process t1 Process t2
 … ...

 x= x + 1; x= x + 1;

But x= x+1; is not an “atomic action”: it takes several steps

10

Race conditions

¨  LOAD x

¨  ADD 1

¨  STORE x

¨  ...
¨  LOAD x

¨  ADD 1

¨  STORE x

Thread t1 Thread t2

11

¨  Suppose x is initially 5

¨  ... after finishing, x = 6! We “lost” an update

Race conditions

¨  Typical race condition: two processes wanting to change a
stack at the same time. Or make conflicting changes to a
database at the same time.

¨  Race conditions are bad news

¤  Race conditions can cause many kinds of bugs, not just the
example we see here!

¤ Common cause for “blue screens”: null pointer exceptions,
damaged data structures

¤ Concurrency makes proving programs correct much harder!

12

Deadlock

¨  To prevent race conditions, one often requires a process to
“acquire” resources before accessing them, and only one
process can “acquire” a given resource at a time.

¨  Examples of resources are:
¤ A file to be read
¤ An object that maintains a stack, a linked list, a hash table,

etc.

¨  But if processes have to acquire two or more resources at the
same time in order to do their work, deadlock can occur. This is
the subject of the next slides.

13

Dining philosopher problem
14

Five philosophers
sitting at a table.

Each repeatedly
does this:
 1. think
 2. eat
What do they eat?
spaghetti.

Need TWO forks
to eat spaghetti!

Dining philosopher problem
15

Each does
repeatedly :
 1. think
 2. eat (2 forks)
eat is then:
 pick up left fork
 pick up right fork
 pick up food, eat
 put down left fork
 put down rght fork

At one point,
they all pick up
their left forks

DEADLOCK!

Dining philosopher problem
16

Simple solution to
deadlock:
Number the forks. Pick
up smaller one first
 1. think
 2. eat (2 forks)
eat is then:
 pick up smaller fork
 pick up bigger fork
 pick up food, eat
 put down bigger fork
 put down smallerfork 1

2

4

3

5

Java: What is a Thread?

¨  A separate “execution” that runs within a single program and
can perform a computational task independently and
concurrently with other threads

¨  Many applications do their work in just a single thread: the one
that called main() at startup
¤  But there may still be extra threads...
¤  ... Garbage collection runs in a “background” thread
¤ GUIs have a separate thread that listens for events and
“dispatches” calls to methods to process them

¨  Today: learn to create new threads of our own in Java

17

Thread

¨  A thread is an object that “independently computes”
¤ Needs to be created, like any object
¤  Then “started” --causes some method to be called. It runs

side by side with other threads in the same program; they
see the same global data

¨  The actual executions could occur on different CPU cores, but
but don’t have to
¤ We can also simulate threads by multiplexing a smaller

number of cores over a larger number of threads

18

Java class Thread

¨  threads are instances of class Thread
¤ Can create many, but they do consume space & time

¨  The Java Virtual Machine creates the thread that executes
your main method.

¨  Threads have a priority
¤ Higher priority threads are executed preferentially
¤  By default, newly created threads have initial priority equal

to the thread that created it (but priority can be changed)

19

Creating a new Thread (Method 1)
20

class PrimeThread extends Thread {
 long a, b;

 PrimeThread(long a, long b) {
 this.a= a; this.b= b;
 }

 @Override public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeThread p= new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

Call run() directly?
no new thread is used:
Calling thread will run it

Do this and
Java invokes run() in new thread

Creating a new Thread (Method 2)
21

class PrimeRun implements Runnable {
 long a, b;

 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }

 public void run() {
 //compute primes between a and b
 ...
 }
}

PrimeRun p= new PrimeRun(143, 195);
new Thread(p).start();

Example
22

Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }
}

Thread name, priority, thread group

Example
23 Thread[main,5,main] 0

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 currentThread().setPriority(4);
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }
}

Thread name, priority, thread group

Example
24 Thread[main,5,main] 0

Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
 }
 }

 public void run() {
 currentThread().setPriority(6);
 for (int i= 0; i < 10; i++) {
 System.out.format("%s %d\n",
 Thread.currentThread(), i);
}}}

Thread name, priority, thread group

Example
25

waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
 static boolean ok = true;

 public static void main(String[] args) {
 new ThreadTest().start();
 for (int i = 0; i < 10; i++) {
 System.out.println("waiting...");
 yield();
 }
 ok = false;
 }

 public void run() {
 while (ok) {
 System.out.println("running...");
 yield();
 }
 System.out.println("done");
 }
}

If threads happen to be sharing
a CPU, yield allows other waiting

threads to run.

Terminating Threads is tricky

¨  Easily done... but only in certain ways
¤  Safe way to terminate a thread: return from method run
¤  Thread throws uncaught exception? whole program will be

halted (but it can take a second or two ...)

¨  Some old APIs have issues: stop(), interrupt(), suspend(),
 destroy(), etc.
¤  Issue: Can easily leave application in a “broken” internal

state.
¤ Many applications have some kind of variable telling the

thread to stop itself.

26

Threads can pause

¨  When active, a thread is “runnable”.
¤  It may not actually be “running”. For that, a CPU must

schedule it. Higher priority threads could run first.
¨  A thread can pause

¤ Call Thread.sleep(k) to sleep for k milliseconds
¤ Doing I/O (e.g. read file, wait for mouse input, open file)

can cause thread to pause
¤  Java has a form of locks associated with objects. When

threads lock an object, one succeeds at a time.

27

Background (daemon) Threads

¨  In many applications we have a notion of “foreground” and
“background” (daemon) threads
¤  Foreground threads are doing visible work, like interacting

with the user or updating the display
¤  Background threads do things like maintaining data

structures (rebalancing trees, garbage collection, etc.)

¨  On your computer, the same notion of background workers
explains why so many things are always running in the task
manager.

28

Example: a lucky scenario
29

private Stack<String> stack= new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

Example: an unlucky scenario
30

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 //do something with s...
}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

Synchronization

¨  Java has one primary tool for preventing race conditions.
you must use it by carefully and explicitly – it isn’t automatic.
¤ Called a synchronization barrier
¤  Think of it as a kind of lock

n Even if several threads try to acquire the lock at once,
only one can succeed at a time, while others wait

n When it releases the lock, another thread can acquire it
n Can’t predict the order in which contending threads get

the lock but it should be “fair” if priorities are the same

31

Solution: use with synchronization
32

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s= stack.pop();
 }
 //do something with s...
}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Solution: locking
33

public void doSomething() {
 synchronized (this) {
 ...
 }
}

• You can lock on any object, including this

public synchronized void doSomething() {
 ...
}

Syntactic sugar for the above:

Synchronization + priorities

¨  Combining mundane features can get you in trouble
¨  Java has priorities ... and synchronization

¤ But they don’t “mix” nicely
¤ High-priority runs before low priority
¤  ... The lower priority thread “starves”

¨  Even worse...
¤ With many threads, you could have a second high

priority thread stuck waiting on that starving low
priority thread! Now both are starving...

34

Fancier forms of locking

¨  Java developers have created various synchronization abstract
data types
¤  Semaphores: a kind of synchronized counter (invented by

Dijkstra)
¤  Event-driven synchronization

¨  The Windows and Linux and Apple O/S have kernel locking
features, like file locking

¨  But for Java, synchronized is the core mechanism

35

Finer grained synchronization

¨  Java allows you to do fancier synchronization
¤ But can only be used inside a synchronization block
¤ Special primatives called wait/notify

36

wait/notify
37

boolean isRunning = true;

public synchronized void run() {
 while (true) {
 while (isRunning) {
 //do one step of simulation
 }
 try {
 wait();
 } catch (InterruptedException ie) {}
 isRunning = true;
 }
}

public void stopAnimation() {
 animator.isRunning = false;
}

public void restartAnimation() {
 synchronized(animator) {
 animator.notify();
 }
}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

Suppose we put this inside an object called animator:

must be synchronized!

Summary

¤ Use of multiple processes and multiple threads within each
process can exploit concurrency
n Which may be real (multicore) or “virtual” (an illusion)

¤ When using threads, beware!
n Synchronize any shared memory to avoid race conditions
n Synchronize objects in certain order to avoid deadlocks
n Even with proper synchronization, concurrent programs

can have other problems such as “livelock”
¤  Serious treatment of concurrency is a complex topic

(covered in more detail in cs3410 and cs4410)

38

