

Spanning trees

What we do today:

- Calculating the shortest path in Dijkstra's algorithm
- Look at time complexity of shortest path
\square Definitions
- Minimum spanning trees
$\square 3$ greedy algorithms (including Kruskal \& Prim)
\square Concluding comments:
- Greedy algorithms
- Travelling salesman problem

Assignment A7 available
 Due 2 days after prelim 2.

Implement Dijkstra's shortest-path algorithm.
Start with our abstract algorithm, implement it in a specific setting. Our method: 36 lines, including extensive comments

We will make our solution to A6 available after the deadline for late submissions.

Last semester: median: 4.0, mean: 3.84. But our abstract algorithm is much closer to the planned implementation than lat fall, and we expect a much lower median and mean.

Execution times for ArrayList methods, etc.

Several questions on the Piazza about how fast various methods are in ArrayList, HashMap, etc.

Please please look at the Java API documentation for these classes! All the information is there! For example, I will demo googling

ArrayList 8 java
and show you, in class.
Also, look in the FAQs note for an assignment before asking a question about that assignment!

Dijkstra's algorithm using Nodes.

An object of class Node for each node of the graph.
Nodes have an identification, (S, A, E, etc).
Nodes contain shortest distance from Start node (red).

Backpointers

Shortest path requires not only the distance from start to a node but the shortest path itself. How to do that?
In the graph, red numbers are shortest distance from S.

B, 1
Need shortest path from S to every node. Storing that info in node S wouldn't make sense.

Backpointers

When to set a backpointer? In the algorithm, processing an edge (f, w): If the shortest distance to w changes, then set w's backpointer to f. It's that easy!

Each iteration of Dijkstra's algorithm dist: shortest-path length calculated so far	
```f= node in Frontier with min spl; Remov for each neighbor w of f: if w in far-off set then w.spl= f.dist + weight(f,w); Put w in the Frontier; w.backPointer= f; else if f.dist + weight(f,w)<w.spl then w.dist= f.dist + weight(f, w.backPointer= f;```	f from Frontier;   Node@... Node   dist $\qquad$   backPointer $\qquad$

Facts about trees

Consider a graph with
these properties:
1. $\|\mathrm{E}\|=\|\mathrm{V}\|-1$   2. connected   3. no cycles   Any two of these   properties imply the third   -and imply that the   graph is a tree
:---

A spanning tree of a connected undirected graph $(V, E)$ is a subgraph $\left(V, E^{\prime}\right)$ that is a tree


- Same set of vertices V
- Maximal set of edges that
contains no cycle


- Same set of vertices V
- Minimal set of edges that
connect all vertices




## Minimum spanning trees

- Suppose edges are weighted (> 0), and we want a spanning tree of minimum cost (sum of edge weights)
- Some graphs have exactly one minimum spanning tree. Others have several trees with the same cost, any of which is a minimum spanning tree



## Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of finding a global optimum

Example. Make change using the fewest number of coins. Make change for n cents, $\mathrm{n}<100$ (i.e. $<\$ 1$ ) Greedy: At each step, choose the largest possible coin

If $\mathrm{n}>=50$ choose a half dollar and reduce n by 50 ; If $\mathrm{n}>=25$ choose a quarter and reduce n by 25 ; As long as $\mathrm{n}>=10$, choose a dime and reduce n by 10 ; If $\mathrm{n}>=5$, choose a nickel and reduce n by 5 ; Choose n pennies.

## Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of fining a global optimum. Doesn't always work

Example. Make change using the fewest number of coins.
Coins have these values: $7,5,1$
Greedy: At each step, choose the largest possible coin
Consider making change for 10 .
The greedy choice would choose: 7, 1, 1, 1 .
But 5, 5 is only 2 coins.

## Greedy algorithm

A greedy algorithm: follow the heuristic of making a locally optimal choice at each stage, with the hope of fining a global optimum. Doesn't always work

Example. Make change (if possible) using the fewest number of coins.
Coins have these values: 7, 5, 2
Greedy: At each step, choose the largest possible coin
Consider making change for 10 .
The greedy choice would choose: 7, 2 -and can't proceed! But 5, 5 works

## Greediness doesn't work here

You're standing at point $x$, and your goal is to climb the highest mountain.

Two possible steps: down the hill or up the hill. The greedy step is to walk up hill. But that is a local optimum choice, not a global one. Greediness fails in this case.


## Construct minimum spanning tree (greedy)

As long as there is a cycle:

Find a black max-weight edge - | Maximal set of |
| ---: |
| edges that |
| if it is on a cycle, throw it out |
| otherwise keep it (make it red) |
| We mark a node red to indicate that we have looked at it |
| and determined it can't be removed because removing it |
| would unconnect the graph (the node is not on a cycle) |



Two greedy algorithms for constructing a minimum spanning tree
$\square$ Kruskal
$\square$ Prim
Both use this definition of a spanning tree and in a greedy fashion:

Minimal set of edges
that connect all vertices

Both are nondeterministic, in that at a point they may choose one of several nodes with equal weight

## Construct minimum spanning tree (greedy)

As long as there is a cycle:
Find a black max-weight edge - if it is on a cycle, throw it out otherwise keep it (make it red)
Maximal set of
edges that
contains no cycle edges that contains no cycle

Nobody uses this algorithm because, usually, there are far more edges than nodes. If graph with $n$ nodes is complete, $O\left(n^{*} n\right)$ edges have to be deleted!

It's better to use this property of a spanning tree and add edges to the spanning tree. For a tree with $n$ nodes, $\mathrm{n}-1$ edges have to be added

Minimal set of   edges that   connect all   vertices

Kruskal's algorithm: greedy
At each step, add an edge (that does not form
a cycle) with minimum weight
edge with
weight 2

Tree greedy spanning tree algorithms

1. Algorithm that uses this property of a spanning tree: Maximal set of edges that contains no cycle
2. Algorithms that use this property of a spanning tree: Minimal set of edges that connect all vertices
(a) Kruskal (b) Prim

When edge weights are all distinct, or if there is exactly one minimum spanning tree, all 3 algorithms construct the same tree.

Prim's algorithm ( n nodes, m edges)	
```prim(s) \{ \(\mathrm{D}[\mathrm{s}]=0 ; / /\) start vertex \(\mathrm{D}[\mathrm{i}]=\infty\) for all \(\mathrm{i} \neq \mathrm{s}\); while (a vertex is unmarked) \(\{\) \(\mathrm{v}=\) unmarked vertex with smallest D; mark v; for (each w adj to v) \(\mathrm{D}[\mathrm{w}]=\min (\mathrm{D}[\mathrm{w}], \mathrm{c}(\mathrm{v}, \mathrm{w}))\); \} \}```	$\square \mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$ for adj list   - Use a priority queue PQ   $\square$ Regular $P Q$ produces time $O(n+m \log m)$   - Can improve to $O(m+n \log n)$ using $a$ fancier heap   - $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for adj matrix   -while-loop iterates $n$ times   -for-loop takes $\mathrm{O}(\mathrm{n})$ time

Application of MST

Greedy algorithms

- These are Greedy Algorithms
\square Greedy Strategy: is an algorithm design technique

Like Divide \& Conquer
\square Greedy algorithms are used to solve optimization problems

Goal: find the best solution \square Works when the problem has the greedy-choice property: A global optimum can be reached by making locally optimum choices

Example: Making change Given an amount of money, find smallest number of coins to make that amount
Solution: Use Greedy Algorithm: Use as many large coins as you can.
Produces optimum number of coins for US coin system May fail for old UK system

Similar code structures

