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SHORTEST PATHS 
 

READINGS?  CHAPTER 28 
 

Lecture 20 
CS2110 – Spring 2016 
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About A6 

We give you class ArrayHeaps for a reason: 
 

It shows the simplest way to write methods like bubble-up and 
bubble-down. It gives you a method to get the smaller child.  

You can write A6 most easily by adapting the ArrayHeap 
methods to work in the new environment! Do the assignment 
without looking at ArrayHeap makes it MUCH harder! 

Look at all the notes in the pinned Piazza note A6 FAQ before 
beginning —and then every other day to see whether new info 
has been added. 
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Shortest Paths in Graphs 

Problem of finding shortest (min-cost) path in a graph occurs often 
¤  Find shortest route between Ithaca and West Lafayette, IN 
¤  Result depends on notion of cost 

n Least mileage… or least time… or cheapest 
n Perhaps, expends the least power in the butterfly while 

flying fastest 
n Many “costs” can be represented as edge weights 

Every time you use googlemaps or the GPS system on your 
smartphone to find directions you are using a shortest-path 
algorithm 
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Dijkstra’s shortest-path algorithm 
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Edsger Dijkstra, in an interview in 2010 (CACM):  
 … the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956] 
 

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 
Mathematik 1, 269–271 (1959). 
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and 
his contributions. As a historical record, this is a gold mine. 

5

Dijkstra’s shortest-path algorithm 
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Dijsktra describes the algorithm in English: 
¨  When he designed it in 1956 (he was 26 years old), most people 
were programming in assembly language! 
¨  Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished. 
No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijkstra says, “my solution is preferred to another one 
… “the amount of work to be done seems considerably less.” 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959). 
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1968 NATO Conference on 
Software Engineering, Garmisch, Germany 
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Dijkstra 

Gries 

Term “software engineering” coined for this conference 
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1968 NATO Conference on Software Engineering 
 

•  In Garmisch, Germany 
•  Academicians and industry people attended 

•  For first time, people admitted they did not know what they 
were doing when developing/testing software. Concepts, 
methodologies, tools were inadequate, missing 

•  The term software engineering was born at this conference. 
•  The NATO Software Engineering Conferences:  

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html 
Get a good sense of the times by reading these reports! 
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1968 NATO Conference on 
Software Engineering, Garmisch, Germany 
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1968/69 NATO Conferences on Software Engineering 
 

Editors of the proceedings

Edsger Dijkstra   Niklaus Wirth   Tony Hoare       David Gries  

 Beards 
The reason why some people grow 
     aggressive tufts of facial hair 
Is that they do not like to show 
     the chin that isn't there. 
                    a grook by Piet Hein 

From Gries to Tate 
10 

Googlemaps: find a route 
from Gries’s to Tate’s house. 
 
Gives two routes 
12 minutes, 7.3 miles 
15 minutes, 6.6 miles 

Shortest path? 
11 

Each intersection is 
a node of the graph, 
and each road 
between two 
intersections has a 
weight 
 
distance? 
time to traverse? 
… 

Shortest path? 
12 

Fan out from the start 
node (kind of breadth-
first search) 
 
Settled set: Nodes 
whose shortest 
distance is known. 
 
Frontier set: Nodes 
seen at least once but 
shortest distance not 
yet known 
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Shortest path? 
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Settled set: we know their shortest paths 
Frontier set: We know some but not all information 
 
Each iteration: 
 
1. Move to the Settled set: a Frontier node with shortest 
distance from start node. 
 
2. Add neighbors of the new Settled node to the Frontier 
set. 

Shortest path? 
14 

Fan out from the start 
node (kind of breadth-
first search). Start: 
 
Settled set: 
 
Frontier set:  

1. Move to Settled set 
the Frontier node with 
shortest distance 
from start 

Shortest path? 
15 

Fan out from start 
node. Recording 
shortest distance from 
start seen so far 
 
Settled set: 
 
Frontier set:  

21

1 2

2. Add neighbors of 
new Settled node 
to Frontier 

Shortest path? 
16 

Fan out from start 
node. Recording 
shortest distance from 
start seen so far 
 
Settled set: 
 
Frontier set:  

21

1 2

1. Move to Settled set 
a Frontier node with 
shortest distance from 
start 

1
1

Shortest path? 
17 

Fan out from start 
node. Recording 
shortest distance from 
start seen so far 
 
Settled set: 
 
Frontier set:  

21

2

2. Add neighbors of new 
Settled node to Frontier 
(there are none) 

1

Shortest path? 
18 

Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  21

2

1. Move to Settled set 
a Frontier node with 
shortest distance from 
start 

1 2

2
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Shortest path? 
19 

Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  21

2. Add neighbors of 
new Settled node to 
Frontier  

1 2

2

Shortest path? 
20 

Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  21

1. Move to Settled set 
a Frontier node with 
shortest distance 
tfrom start 

1

4

3

43

5

5

2

5

5

Shortest path? 
21 

Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  21

1. Add neighbors of 
new Settled node to 
Frontier  

1

4

3

43

5

2

5

5

6

7

67

4

0

1

2 3
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Dijkstra’s shortest path algorithm 
 
 

The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in 
L[w] the length of the shortest path from v to w.

wgt(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.

23

Dijkstra’s shortest path algorithm 
 
 Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all 
variables— just before each node i  is given its final value L[i].

This relation among the variables is an invariant, because 
it is always true.

Each node i (except the first) is given its final 
value L[i] during an iteration of a loop, so the 
invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

24

1. For a Settled node s, L[s] is length of shortest v → s path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only red nodes (except for f)

Frontier 
F

Settled 
S

   Far off

f

4
2 4

1
3

34

0

1

2 3

f

(edges leaving the Far off set and 
edges from the Frontier to the 
Settled set are not shown)

The loop invariant 
 

v
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1. For a Settled node s, L[s] is length of shortest v → r path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only Settled nodes (except for f).

Theorem. For a node f in F with minimum L value (over nodes in 
F), L[f] is the length of a shortest path from v to f.

Frontier 
F

Settled 
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

26

1.  For s, L[s] is length of
     shortest v→ s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).

S=  { }; F=  { v }; L[v]=  0;

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm 

Loopy question 1: 
How does the loop start? What 
is done to truthify the invariant?

27

When does loop stop? When is 
array L completely calculated?

while                 {
    

}

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}
The algorithm 

Loopy question 2: 

S=  { }; F=  { v }; L[v]=  0;
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while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f

F ≠  {}
The algorithm 

f

S=  { }; F=  { v }; L[v]= 0;

Loopy question 3: Progress toward termination?

29

while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}
The algorithm 

f

S=  { }; F=  { v }; L[v]= 0;

for each edge (f, w) {
   
   

}

Loopy question 4: Maintain invariant?

if (w not in S or F) {

} else {

}

w
w

for each edge (f, w) {
   
   

}

while                 {
    

}

30

f= node in F with min L value; 

Remove f from F, add it to S;

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

w

F ≠  {}
The algorithm 

f

S=  { }; F=  { v }; L[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
    L[w]=  L[f] + wgt(f, w);
    add w to F;
} else {

}

w
w
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for each edge (f, w) {
   
   

}

while                 {
    

}

31

f= node in F with min L value; 

Remove f from F, add it to S;

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

w

F ≠  {}
The algorithm 

f

S=  { }; F=  { v }; L[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
    L[w]=  L[f] + wgt(f, w);
    add w to F;
} else {

}

w

if (L[f] + wgt (f,w) < L[w])
    L[w]= L[f] + wgt(f, w);  

for each edge (f, w) {
   
   

}

while                 {
    

}

32

f= node in F with min L value; 

Remove f from F, add it to S;

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}
The algorithm S=  { }; F=  { v }; L[v]= 0;

if (w not in S or F) {
    L[w]=  L[f] + wgt(f, w);
    add w to F;
} else {

}

if (L[f] + wgt (f,w) < L[w])
    L[w]= L[f] + wgt(f, w);  

Algorithm is finished!

33

 S                  F          Far off

S=  { }; F=  { v }; L[v]= 0;
while   F ≠  {}    {
    f= node in F with min L value;
         Remove f from F, add it to S;
   for each edge (f, w) {
       if (w not in S or F) {
            L[w]=  L[f] + wgt(f, w);
            add w to F;
   } else {
       if (L[f] + wgt (f,w) < L[w])
            L[w]= L[f] + wgt(f, w);
   }
}}

Implement F using a min-
heap, priorities are L-values 

Need L-values of nodes in S 

Need to tell quickly whether 
a node is in S or F 

class SFInfo { 
    // this node’s L-value 
    int distance; 
}  more fields later 

// entries for nodes in S or F 
HashMap<Node, SFInfo>   
                              map; 

34

 S         F

S= {}; F=  { v }; L[v]= 0;      
while   F ≠  {}    {
    f= node in F with min L value;
         Remove f from F, add it to S;
   for each edge (f, w) {
       if (w not in F or S             ) {
            L[w]=  L[f] + wgt(f, w);
            add w to F;            
   } else {
       if (L[f] + wgt (f,w) < L[w])
            L[w]= L[f] + wgt(f, w);
   }
}}

class SFInfo { 
    // this node’s L-value 
    int distance; 
}  more fields later 

// entries for nodes in S or F 
HashMap<Node, SFInfo>   
                              map; 

add v to map 

map 

add w to map 
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 S         F

F=  { v }; L[v]= 0; add v to map    
while   F ≠  {}    {
    f= node in F with min L value;
         Remove f from F;
   for each edge (f, w) {
       if (w not in map) {
            L[w]=  L[f] + wgt(f, w);
            add w to F; add w to map;            
   } else {
       if (L[f] + wgt (f,w) < L[w])
            L[w]= L[f] + wgt(f, w);
   }
}}

class SFInfo { 
    // this node’s L-value 
    int distance; 
}  more fields later 

// entries for nodes in S or F 
HashMap<Node, SFInfo>   
                              map; 

Final algorithm 

36

 S         F

F=  { v }; L[v]= 0; add v to map    
while   F ≠  {}    {
    f= node in F with min L value;
         Remove f from F;
   for each edge (f, w) {
       if (w not in map) {
            L[w]=  L[f] + wgt(f, w);
            add w to F; add w to map;            
   } else {
       if (L[f] + wgt (f, w) < L[w])
            L[w]= L[f] + wgt(f, w);
   }
}}

n nodes, reachable from v.  e ≥ n-1 edges.                    
n–1  ≤  e  ≤  n*n  

For each statement, calculate 
the average TOTAL time it 
takes to execute it.

Examples:
F ≠ {} is evaluated n+1 
times.  O(n)

w not in map is evaluated e 
times (once for each edge).
It’s true  n-1 times
It’s false  e – (n-1)  times
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 S         F

F=  { v }; L[v]= 0; add v to map    
while   F ≠  {}    {
    f= node in F with min L value;
         Remove f from F;
   for each edge (f, w) {
       if (w not in map) {
            L[w]=  L[f] + wgt(f, w);
            add w to F; add w to map;            
   } else {
       if (L[f] + wgt (f, w) < L[w])
            L[w]= L[f] + wgt(f, w);
   }
}}

n nodes, reachable from v.  e ≥ n-1 edges.                    
n–1  ≤  e  ≤  n*n

O(1)
O(n)

O(n + e)

outer loop:
n iterations.
Condition 
evaluated
n+1 times.
inner loop:
e iterations.
Condition 
evaluated
n + e times.

O(n)
O(n log n)

O(e)
   O(n)
   O(n log n)

O((e-n) log n)

true n-1 
times 
false 

e-(n-1) 

 Complete graph: O(n2 log n). Sparse graph: O(n log n)


