

Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often \square Find shortest route between Ithaca and West Lafayette, IN
\square Result depends on notion of cost

- Least mileage... or least time... or cheapest
- Perhaps, expends the least power in the butterfly while flying fastest
- Many "costs" can be represented as edge weights

Every time you use googlemaps or the GPS system on your smartphone to find directions you are using a shortest-path algorithm

Dijkstra's shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (CACM):
... the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiance, and tired, we sat down on the cafe terrace to drink a cup of coffee, and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische Mathematik 1, 269-271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his contributions. As a historical record, this is a gold mine.

Dijkstra's shortest-path algorithm

Dijsktra describes the algorithm in English:
\square When he designed it in 1956 (he was 26 years old), most people were programming in assembly language!
\square Only one high-level language: Fortran, developed by John Backus at IBM and not quite finished.
No theory of order-of-execution time - topic yet to be developed. In paper, Dijkstra says, "my solution is preferred to another one ... "the amount of work to be done seems considerably less."

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische Mathematik 1, 269-271 (1959).
About A6
We give you class ArrayHeaps for a reason:
It shows the simplest way to write methods like bubble-up and
bubble-down. It gives you a method to get the smaller child.
You can write A6 most easily by adapting the ArrayHeap
methods to work in the new environment! Do the assignment
without looking at ArrayHeap makes it MUCH harder!
Look at all the notes in the pinned Piazza note A6 FAQ before
beginning -and then every other day to see whether new info
has been added.

1968 NATO Conference on Software Engineering

- In Garmisch, Germany

Academicians and industry people attended
For first time, people admitted they did not know what they were doing when developing/testing software. Concepts, methodologies, tools were inadequate, missing
The term software engineering was born at this conference.
The NATO Software Engineering Conferences:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

Shortest path?
Settled set: we know their shortest paths
Frontier set: We know some but not all information
Each iteration:
1. Move to the Settled set: a Frontier node with shortest
distance from start node.
2. Add neighbors of the new Settled node to the Frontier
set.

Shortest path?	
14	10
Fan out from the start node (kind of breadthfirst search). Start:	Remime $\operatorname{cic}^{8100^{2}}$
Settled set:	
Frontier set:	$P_{\text {2ssmoeth }}$
1. Move to Settled set the Frontier node with shortest distance from start	

Dijkstra's shortest path algorithm

The $\mathrm{n}(>0)$ nodes of a graph numbered $0 . . \mathrm{n}-1$.
Each edge has a positive weight.
$\mathrm{wgt}(\mathrm{v} 1, \mathrm{v} 2)$ is the weight of the edge from node v 1 to v 2 .
Some node v be selected as the start node.
Calculate length of shortest path from v to each node.
Use an array L[0..n-1]: for each node w, store in $\mathrm{L}[\mathrm{w}]$ the length of the shortest path from v to w .

1. For $\mathrm{s}, \mathrm{L}[\mathrm{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. Edges leaving S go to \mathbf{F}.
3. For $f, L[f]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path using red nodes (except for f).
Theorem: For a node \mathbf{f} in $\mathbf{F} \quad\}$
with $\min \mathrm{L}$ value, $\mathrm{L}[\mathrm{f}]$ is
shortest path length
Loopy question 3: Progress toward termination?

The algorithm	$\begin{aligned} & \mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{L}[\mathrm{v}]=0 ; \\ & \text { while } \mathrm{F} \neq\{ \}\{ \\ & \mathrm{f}=\text { node in } \mathrm{F} \text { with } \min \mathrm{L} \text { value; } \\ & \text { Remove } \mathrm{f} \text { from } \mathrm{F} \text {, add it to } \mathrm{S} ; \end{aligned}$
1. For $\mathrm{s}, \mathrm{L}[\mathrm{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path. 2. Edges leaving S go to \mathbf{F}. 3. For $f, L[f]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path using red nodes (except for f).	```for each edge (f, w) { if (w not in S or F) { L[w]= L[f] + wgt(f,w); add w to F; } else { if (L[f] + wgt (f,w) < L[w]) L[w]= L[f] + wgt(f,w);```
Theorem: For a node \mathbf{f} in \mathbf{F} with min L value, $\mathrm{L}[\mathrm{f}]$ is shortest path length	$\}^{\}}$
Loopy question 4: Maintain invariant?	

$S \xrightarrow{\mathrm{~F}} \longrightarrow$	Final algorithm
```F={v };L[v]= 0; add v to map while F\not= {} { f= node in F with min L value; Remove f from F; for each edge (f,w) { if (w not in map) { L[w]= L[f] + wgt(f,w); add w to F; add w to map; } else {```	class SFInfo \{   // this node's L-value   int distance;   \} more fields later
```if (L[f] + wgt (f,w) < L[w]) L[w]= L[f] + wgt(f,w); }```	// entries for nodes in S or F HashMap<Node, SFInfo> map;
\}\}	35

