
4/13/16

1

SHORTEST PATHS

READINGS? CHAPTER 28

Lecture 20
CS2110 – Spring 2016

1

About A6

We give you class ArrayHeaps for a reason:

It shows the simplest way to write methods like bubble-up and
bubble-down. It gives you a method to get the smaller child.

You can write A6 most easily by adapting the ArrayHeap
methods to work in the new environment! Do the assignment
without looking at ArrayHeap makes it MUCH harder!

Look at all the notes in the pinned Piazza note A6 FAQ before
beginning —and then every other day to see whether new info
has been added.

2

Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often
¤  Find shortest route between Ithaca and West Lafayette, IN
¤  Result depends on notion of cost

n Least mileage… or least time… or cheapest
n Perhaps, expends the least power in the butterfly while

flying fastest
n Many “costs” can be represented as edge weights

Every time you use googlemaps or the GPS system on your
smartphone to find directions you are using a shortest-path
algorithm

3

4

Dijkstra’s shortest-path algorithm
4

Edsger Dijkstra, in an interview in 2010 (CACM):
 … the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do
this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1, 269–271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and
his contributions. As a historical record, this is a gold mine.

5

Dijkstra’s shortest-path algorithm
5

Dijsktra describes the algorithm in English:
¨  When he designed it in 1956 (he was 26 years old), most people
were programming in assembly language!
¨  Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.
No theory of order-of-execution time —topic yet to be developed.
In paper, Dijkstra says, “my solution is preferred to another one
… “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1, 269–271 (1959).

6

1968 NATO Conference on
Software Engineering, Garmisch, Germany

6

Dijkstra

Gries

Term “software engineering” coined for this conference

4/13/16

2

7
1968 NATO Conference on Software Engineering

•  In Garmisch, Germany
•  Academicians and industry people attended

•  For first time, people admitted they did not know what they
were doing when developing/testing software. Concepts,
methodologies, tools were inadequate, missing

•  The term software engineering was born at this conference.
•  The NATO Software Engineering Conferences:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

8

1968 NATO Conference on
Software Engineering, Garmisch, Germany

8

9

9

1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Edsger Dijkstra Niklaus Wirth Tony Hoare David Gries

 Beards
The reason why some people grow
 aggressive tufts of facial hair
Is that they do not like to show
 the chin that isn't there.
 a grook by Piet Hein

From Gries to Tate
10

Googlemaps: find a route
from Gries’s to Tate’s house.

Gives two routes
12 minutes, 7.3 miles
15 minutes, 6.6 miles

Shortest path?
11

Each intersection is
a node of the graph,
and each road
between two
intersections has a
weight

distance?
time to traverse?
…

Shortest path?
12

Fan out from the start
node (kind of breadth-
first search)

Settled set: Nodes
whose shortest
distance is known.

Frontier set: Nodes
seen at least once but
shortest distance not
yet known

4/13/16

3

Shortest path?
13

Settled set: we know their shortest paths
Frontier set: We know some but not all information

Each iteration:

1. Move to the Settled set: a Frontier node with shortest
distance from start node.

2. Add neighbors of the new Settled node to the Frontier
set.

Shortest path?
14

Fan out from the start
node (kind of breadth-
first search). Start:

Settled set:

Frontier set:

1. Move to Settled set
the Frontier node with
shortest distance
from start

Shortest path?
15

Fan out from start
node. Recording
shortest distance from
start seen so far

Settled set:

Frontier set:

21

1 2

2. Add neighbors of
new Settled node
to Frontier

Shortest path?
16

Fan out from start
node. Recording
shortest distance from
start seen so far

Settled set:

Frontier set:

21

1 2

1. Move to Settled set
a Frontier node with
shortest distance from
start

1
1

Shortest path?
17

Fan out from start
node. Recording
shortest distance from
start seen so far

Settled set:

Frontier set:

21

2

2. Add neighbors of new
Settled node to Frontier
(there are none)

1

Shortest path?
18

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set: 21

2

1. Move to Settled set
a Frontier node with
shortest distance from
start

1 2

2

4/13/16

4

Shortest path?
19

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set: 21

2. Add neighbors of
new Settled node to
Frontier

1 2

2

Shortest path?
20

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set: 21

1. Move to Settled set
a Frontier node with
shortest distance
tfrom start

1

4

3

43

5

5

2

5

5

Shortest path?
21

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set: 21

1. Add neighbors of
new Settled node to
Frontier

1

4

3

43

5

2

5

5

6

7

67

4

0

1

2 3

22

Dijkstra’s shortest path algorithm

The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in
L[w] the length of the shortest path from v to w.

wgt(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.

23

Dijkstra’s shortest path algorithm

 Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all
variables— just before each node i is given its final value L[i].

This relation among the variables is an invariant, because
it is always true.

Each node i (except the first) is given its final
value L[i] during an iteration of a loop, so the
invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

24

1. For a Settled node s, L[s] is length of shortest v → s path.
2. All edges leaving S go to F.
3. For a Frontier node f, L[f] is length of shortest v → f path
 using only red nodes (except for f)

Frontier
F

Settled
S

 Far off

f

4
2 4

1
3

34

0

1

2 3

f

(edges leaving the Far off set and
edges from the Frontier to the
Settled set are not shown)

The loop invariant

v

4/13/16

5

25

1. For a Settled node s, L[s] is length of shortest v → r path.
2. All edges leaving S go to F.
3. For a Frontier node f, L[f] is length of shortest v → f path
 using only Settled nodes (except for f).

Theorem. For a node f in F with minimum L value (over nodes in
F), L[f] is the length of a shortest path from v to f.

Frontier
F

Settled
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

26

1. For s, L[s] is length of
 shortest v→ s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

S= { }; F= { v }; L[v]= 0;

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm

Loopy question 1:
How does the loop start? What
is done to truthify the invariant?

27

When does loop stop? When is
array L completely calculated?

while {

}

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}
The algorithm

Loopy question 2:

S= { }; F= { v }; L[v]= 0;

28

while {

}

f= node in F with min L value;

Remove f from F, add it to S;

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f

F ≠ {}
The algorithm

f

S= { }; F= { v }; L[v]= 0;

Loopy question 3: Progress toward termination?

29

while {

}

f= node in F with min L value;

Remove f from F, add it to S;

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}
The algorithm

f

S= { }; F= { v }; L[v]= 0;

for each edge (f, w) {

}

Loopy question 4: Maintain invariant?

if (w not in S or F) {

} else {

}

w
w

for each edge (f, w) {

}

while {

}

30

f= node in F with min L value;

Remove f from F, add it to S;

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

w

F ≠ {}
The algorithm

f

S= { }; F= { v }; L[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
 L[w]= L[f] + wgt(f, w);
 add w to F;
} else {

}

w
w

4/13/16

6

for each edge (f, w) {

}

while {

}

31

f= node in F with min L value;

Remove f from F, add it to S;

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

w

F ≠ {}
The algorithm

f

S= { }; F= { v }; L[v]= 0;

Loopy question 4: Maintain invariant?

if (w not in S or F) {
 L[w]= L[f] + wgt(f, w);
 add w to F;
} else {

}

w

if (L[f] + wgt (f,w) < L[w])
 L[w]= L[f] + wgt(f, w);

for each edge (f, w) {

}

while {

}

32

f= node in F with min L value;

Remove f from F, add it to S;

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}
The algorithm S= { }; F= { v }; L[v]= 0;

if (w not in S or F) {
 L[w]= L[f] + wgt(f, w);
 add w to F;
} else {

}

if (L[f] + wgt (f,w) < L[w])
 L[w]= L[f] + wgt(f, w);

Algorithm is finished!

33

 S F Far off

S= { }; F= { v }; L[v]= 0;
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F, add it to S;
 for each edge (f, w) {
 if (w not in S or F) {
 L[w]= L[f] + wgt(f, w);
 add w to F;
 } else {
 if (L[f] + wgt (f,w) < L[w])
 L[w]= L[f] + wgt(f, w);
 }
}}

Implement F using a min-
heap, priorities are L-values

Need L-values of nodes in S

Need to tell quickly whether
a node is in S or F

class SFInfo {
 // this node’s L-value
 int distance;
} more fields later

// entries for nodes in S or F
HashMap<Node, SFInfo>
 map;

34

 S F

S= {}; F= { v }; L[v]= 0;
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F, add it to S;
 for each edge (f, w) {
 if (w not in F or S) {
 L[w]= L[f] + wgt(f, w);
 add w to F;
 } else {
 if (L[f] + wgt (f,w) < L[w])
 L[w]= L[f] + wgt(f, w);
 }
}}

class SFInfo {
 // this node’s L-value
 int distance;
} more fields later

// entries for nodes in S or F
HashMap<Node, SFInfo>
 map;

add v to map

map

add w to map

35

 S F

F= { v }; L[v]= 0; add v to map
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F;
 for each edge (f, w) {
 if (w not in map) {
 L[w]= L[f] + wgt(f, w);
 add w to F; add w to map;
 } else {
 if (L[f] + wgt (f,w) < L[w])
 L[w]= L[f] + wgt(f, w);
 }
}}

class SFInfo {
 // this node’s L-value
 int distance;
} more fields later

// entries for nodes in S or F
HashMap<Node, SFInfo>
 map;

Final algorithm

36

 S F

F= { v }; L[v]= 0; add v to map
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F;
 for each edge (f, w) {
 if (w not in map) {
 L[w]= L[f] + wgt(f, w);
 add w to F; add w to map;
 } else {
 if (L[f] + wgt (f, w) < L[w])
 L[w]= L[f] + wgt(f, w);
 }
}}

n nodes, reachable from v. e ≥ n-1 edges.
n–1 ≤ e ≤ n*n

For each statement, calculate
the average TOTAL time it
takes to execute it.

Examples:
F ≠ {} is evaluated n+1
times. O(n)

w not in map is evaluated e
times (once for each edge).
It’s true n-1 times
It’s false e – (n-1) times

4/13/16

7

37

 S F

F= { v }; L[v]= 0; add v to map
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F;
 for each edge (f, w) {
 if (w not in map) {
 L[w]= L[f] + wgt(f, w);
 add w to F; add w to map;
 } else {
 if (L[f] + wgt (f, w) < L[w])
 L[w]= L[f] + wgt(f, w);
 }
}}

n nodes, reachable from v. e ≥ n-1 edges.
n–1 ≤ e ≤ n*n

O(1)
O(n)

O(n + e)

outer loop:
n iterations.
Condition
evaluated
n+1 times.
inner loop:
e iterations.
Condition
evaluated
n + e times.

O(n)
O(n log n)

O(e)
 O(n)
 O(n log n)

O((e-n) log n)

true n-1
times
false

e-(n-1)

 Complete graph: O(n2 log n). Sparse graph: O(n log n)

