G Ira p hS il C52110, Spring 2016 Where did David leave that book?

Where did David leave that book?

Where did David leave that book?

) 1.)
Go as far down a path as
possible before backtracking
— Depth-First Search
3

4
tt

Graph Algorithms

Reachability

* Search
— Depth-first search
— Breadth-first search
* Shortest paths Which nodes are

reachable from
— Dijkstra's algorithm node 1?

Node v is reachable from node u if there is a
path from u to v.

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm

Reachability Reachability
Node v is reachable from node u if there is a

Node v is reachable from node u if there is a
path from u to v.

path from u to v.

Which nodes are

Which nodes are
reachable from

reachable from

node 1? node 4?
0,1,2,3,5
Reachability Reachability
Node v is reachable from node u if there is a We need an
path from u to v.

invariant!

Which nodes are .
reachable from How to determine

node 4? reachability efficiently?
3,4,5,6

Reachability

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

Which nodes are
reachable from
node 1 without
green nodes?

Which nodes are
reachable from
node 1 without
green nodes?

1

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

Which nodes are
reachable from
node 4 without
green nodes?

Depth-First Search

* Keep pushing the search forward
* Mark nodes as “visited” (green) as you go
* Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

Depth-First Search

* Keep pushing the search forward
* Mark nodes as “visited” (green) as you go
¢ Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

* Extend path to some child

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

Which nodes are
reachable from
node 4 without
green nodes?
None!

Node 4 is green, so all
paths from node 4
contain a green node!

Depth-First Search

* Keep pushing the search forward
* Mark nodes as “visited” (green) as you go
* Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

e Start at node 1

Depth-First Search

* Keep pushing the search forward
* Mark nodes as “visited” (green) as you go
* Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

* Extend path to some child

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

No new way to extend path, so backtrack

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

l . Which nodes are

: reachable from
.> g node 1?
e @
L °

Extend path to some child

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

]

Which nodes are

l \ / = reachable from
@—* node 1?
3 pu

No new way to extend path, so backtrack

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

2 - 5
P Which nodes are
l - reachable from
)—" node 1?

&

Extend path to a different child

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

2 - (S
s Which nodes are
l : reachable from
C’ﬁ o node 1?

&

Already visited, so backtrack

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

No new way to extend path, so backtrack

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

Extend path to a different child

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

* Extend path to some child

Which nodes are
reachable from
node 1?

Already visited, so backtrack

Depth-First Search

* Keep pushing the search forward
* Mark nodes as “visited” (green) as you go
* Backtrack only when you can’t go any further

/4_”»;

Which nodes are
reachable from
node 1?

\/

Depth-First Search

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

/ 2 - (S
Which nodes are
l \ reachable from
I N node 1?

No new way to extend path, so backtrack

Depth-First Search Depth-First Search using Recursion

/** Visit all nodes reachable from u without visited nodes */

Keep pushing the search forward
Mark nodes as “visited” (green) as you go
Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

Nothing to backtrack, so all done!

void dfs(Node u) {
if (u.hasBeenVisited()) return;

Which nodes are
reachable from
node 4 without
green nodes?
None!

Depth-First Search using Recursion

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {
if (u.hasBeenVisited()) return;

Depth-First Search using Recursion

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {

if (u.hasBeenVisited()) return;

u.visit();

for (Node v with edge from u to v) dfs(v);

OO-style Recursive Depth-First Search
class Node {

final List<Node> targets; // edges go from this to targets

boolean visited= false; // has this node been visited?

Node(Node... targets) { this.targets= Arrays.asList(targets); }

/*Visit all nodes reachable from this without visited nodes*/

void dfs() {
if (visited) return;
visited= true;
for (Node v : targets) v.dfs();

Depth-First Search using Recursion

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {

if (u.hasBeenVisited()) return;

u.visit();

for (Node v with edge from u to v) dfs(v);

Depth-First Search using Recursion

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {

if (u.hasBeenVisited()) return;

u.visit();

for (Node v with edge from u to v) dfs(v);

Depth-First Search using Iteration

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {
Collection<Node> work= new Stack<Node>();
work.add(u);
// inv: all nodes that have to be visited are
// reachable (without visited nodes) from some node in work
while (!work.isEmpty()) {
Node u= work.pop(); // Remove first node and put it inu
if (lu.hasBeenVisited()) {
u.visit();
for (Node v with edge from u to v)
work.add(v); // Stack adds nodes to front

Breadth-First Search

* Mark closest nodes as “visited” (green) first
* Then push search out further

Which nodes are
reachable from
node 1?

Breadth-First Search

* Mark closest nodes as “visited” (green) first
* Then push search out further

T A
Which nodes are
l reachable from

node 1?

0

* Visit nodes distance 1 from node 1

Breadth-First Search

* Mark closest nodes as “visited” (green) first
* Then push search out further

Which nodes are
reachable from
node 1?

* No nodes at distance 3, so all done!

Breadth-First Search

* Mark closest nodes as “visited” (green) first
* Then push search out further

Which nodes are
reachable from
node 1?

* Visit nodes distance 0 from node 1

Breadth-First Search

* Mark closest nodes as “visited” (green) first
* Then push search out further

' Which nodes are
l \ reachable from
0 R node 1?

* Visit nodes distance 2 from node 1

Depth-First Search using Iteration

/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {
Collection<Node> work= new Stack<Node>();
work.add(u);
// inv: all nodes that have to be visited are
// reachable (without visited nodes) from some node in work
while (!work.isEmpty()) {
Node u= work.pop(); // Remove first node and put it inu
if (lu.hasBeenVisited()) {
u.visit();
for (Node v with edge from u to v)
work.add(v); // Stack adds nodes to front

Breadth-First Search using Iteration

/** Visit all nodes reachable from u without visited nodes */
void bfs(Node u) {
Collection<Node> work= new Queue<Node>();
work.add(u);
// inv: all nodes that have to be visited are
// reachable (without visited nodes) from some node in work
while (!work.isEmpty()) {
Node u= work.pop(); // Remove first node and put it in u
if (lu.hasBeenVisited()) {
u.visit();
for (Node v with edge from u to v)
work.add(v); // Queue adds nodes to back

