
1

Graphs - II CS 2110, Spring 2016

1

Where did David leave that book?

http://www.geahvet.com
2

Where did David leave that book?

http://www.geahvet.com
3

Where did David leave that book?

http://www.geahvet.com

Go as far down a path as
possible before backtracking
– Depth-First Search

4

Graph Algorithms

• Search

– Depth-first search

– Breadth-first search

• Shortest paths

– Dijkstra's algorithm

• Minimum spanning trees

– Prim's algorithm

– Kruskal's algorithm

5

Reachability

Node v is reachable from node u if there is a
path from u to v.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 1?

6

2

Reachability

Node v is reachable from node u if there is a
path from u to v.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 1?
0, 1, 2, 3, 5

7

Reachability

Node v is reachable from node u if there is a
path from u to v.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 4?

8

Reachability

Node v is reachable from node u if there is a
path from u to v.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 4?
3, 4, 5, 6

9

Reachability

How to determine
reachability efficiently?

We need an
invariant!

10

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 1 without
green nodes?

11

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 1 without
green nodes?
1

12

3

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 4 without
green nodes?

13

Reachability

Node v is reachable from node u without green
nodes if there is a path from u to v without
green nodes.

1

0

2

5

3

4

6

Which nodes are
reachable from
node 4 without
green nodes?
None!

Node 4 is green, so all
paths from node 4

contain a green node!
14

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

15

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Start at node 1

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

16

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to some child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

17

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to some child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

18

4

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• No new way to extend path, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

19

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to a different child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

20

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to some child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

21

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Already visited, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

22

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• No new way to extend path, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

23

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• No new way to extend path, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

24

5

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to a different child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

25

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Extend path to some child

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

26

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Already visited, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

27

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• No new way to extend path, so backtrack

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

28

Depth-First Search

• Keep pushing the search forward

• Mark nodes as “visited” (green) as you go

• Backtrack only when you can’t go any further

• Nothing to backtrack, so all done!

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

29

Depth-First Search using Recursion
/** Visit all nodes reachable from u without visited nodes */

void dfs(Node u) {

 if (u.hasBeenVisited()) return;

}

1

0

2

5

3

6

Which nodes are
reachable from
node 4 without
green nodes?
None!

4

30

6

Depth-First Search using Recursion
/** Visit all nodes reachable from u without visited nodes */

void dfs(Node u) {

 if (u.hasBeenVisited()) return;

}

0

2

5

3

4

6

1

31

Depth-First Search using Recursion
/** Visit all nodes reachable from u without visited nodes */

void dfs(Node u) {

 if (u.hasBeenVisited()) return;

 u.visit();

 for (Node v with edge from u to v) dfs(v);

}

5

3

4

6

1

0

2

32

Depth-First Search using Recursion
/** Visit all nodes reachable from u without visited nodes */

void dfs(Node u) {

 if (u.hasBeenVisited()) return;

 u.visit();

 for (Node v with edge from u to v) dfs(v);

}

5

3

4

6

1

0

2

33

Depth-First Search using Recursion
/** Visit all nodes reachable from u without visited nodes */

void dfs(Node u) {

 if (u.hasBeenVisited()) return;

 u.visit();

 for (Node v with edge from u to v) dfs(v);

}

5

3

4

6

1

0

2

34

OO-style Recursive Depth-First Search

35

class Node {

 final List<Node> targets; // edges go from this to targets

 boolean visited= false; // has this node been visited?

 Node(Node… targets) { this.targets= Arrays.asList(targets); }

 /*Visit all nodes reachable from this without visited nodes*/

 void dfs() {

 if (visited) return;

 visited= true;

 for (Node v : targets) v.dfs();

 }

}

Depth-First Search using Iteration
/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {
 Collection<Node> work= new Stack<Node>();
 work.add(u);
 // inv: all nodes that have to be visited are
 // reachable (without visited nodes) from some node in work
 while () {
 Node u= work.pop(); // Remove first node and put it in u
 if () {
 u.visit();
 for (Node v with edge from u to v)
 work.add(v); // Stack adds nodes to front
 }
 }
}

!work.isEmpty()

!u.hasBeenVisited()

36

7

Breadth-First Search

• Mark closest nodes as “visited” (green) first

• Then push search out further

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

37

Breadth-First Search

• Mark closest nodes as “visited” (green) first

• Then push search out further

• Visit nodes distance 0 from node 1

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

38

Breadth-First Search

• Mark closest nodes as “visited” (green) first

• Then push search out further

• Visit nodes distance 1 from node 1

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

39

Breadth-First Search

• Mark closest nodes as “visited” (green) first

• Then push search out further

• Visit nodes distance 2 from node 1

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

40

Breadth-First Search

• Mark closest nodes as “visited” (green) first

• Then push search out further

• No nodes at distance 3, so all done!

Which nodes are
reachable from
node 1?

1

0

2

5

3

4

6

41

Depth-First Search using Iteration
/** Visit all nodes reachable from u without visited nodes */
void dfs(Node u) {
 Collection<Node> work= new Stack<Node>();
 work.add(u);
 // inv: all nodes that have to be visited are
 // reachable (without visited nodes) from some node in work
 while (!work.isEmpty()) {
 Node u= work.pop(); // Remove first node and put it in u
 if (!u.hasBeenVisited()) {
 u.visit();
 for (Node v with edge from u to v)
 work.add(v); // Stack adds nodes to front
 }
 }
}

42

8

Breadth-First Search using Iteration
/** Visit all nodes reachable from u without visited nodes */
void bfs(Node u) {
 Collection<Node> work= new Queue<Node>();
 work.add(u);
 // inv: all nodes that have to be visited are
 // reachable (without visited nodes) from some node in work
 while (!work.isEmpty()) {
 Node u= work.pop(); // Remove first node and put it in u
 if (!u.hasBeenVisited()) {
 u.visit();
 for (Node v with edge from u to v)
 work.add(v); // Queue adds nodes to back
 }
 }
}

43

