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Announcements

* Reading:
— Chapter 28: Graphs
— Chapter 29: Graph Implementations



These aren’t the graphs we’re interested in
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V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at MGH



And so is this
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And this




This carries Internet traffic across the oceans




A social graph

facebook




An older social graph

Locke’s (blue) and Voltaire’s (yellow) correspondence.
Only letters for which complete location information is available are shown.
Data courtesy the Electronic Enlightenment Project, University of Oxford.



An older social graph
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A fictional social graph
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A transport graph
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Another transport graph




A circuit graph (flip-flop)




A circuit graph (Intel 4004)




A circuit graph (Intel HasweII)
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This is not a graph, this is a cat




This is a graph(ical model) that has
learned to recognize cats
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Some abstract graphs
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Directed Graphs

A directed graph (digraph) is a pair (V, E)

where

— Vs a (finite) set

— E is a set of ordered pairs (U, V) where u,v € V
» Often require u #V (i.e. no self-loops)

An element of V is called a vertex or node Q

An element of E is called an edge or arc
V={A, B, C,D, E}
E={(AC), (B/A), (B,C),

V| = size of V, often denoted by n V= éC,D), (D.C)}

|E| = size of E, often denoted by m E|=5



Undirected Graphs

* Anundirected graph is just like a directed
graph!
— ... except that E is now a set of unordered
pairs {U, v} whereu,v € V

* Every undirected graph can be easily
converted to an equivalent directed
graph via a simple transformation: Q

— Replace every undirected edge with two V={A B, C,D,E}
directed edges in opposite directions E={AC}{BA}
5 PP {B.C}, {C.D}
e ... but not vice versa V=5

[E[=4



Graph Terminology

Vertices U and Vv are called

— the source and sink of the directed edge (u, V),
respectively

— the endpoints of (u, v) or {u, v}
Two vertices are adjacent if they are
connected by an edge Q

The outdegree of a vertex U in a directed
graph is the number of edges for which u is
the source

The indegree of a vertex Vv in a directed graph
is the number of edges for which v is the sink

The degree of a vertex U in an undirected
graph is the number of edges of which u is an

endpoint Q



More Graph Terminology

A path is a sequence V(,Vy,V,,...,V, of vertices
such that for 0 <1 <p,

— (v;,vi,1)EE if the graph is directed

— {v;,vi,1 JEE if the graph is undirected
The length of a path is its number of edges

— In this example, the length is 2
A path is simple if it doesn’t repeat any vertices
A cycle is a path Vj,Vy,Vs,...,V, such that vy = v,

A cycle is simple if it does not repeat any
vertices except the first and last

A graph is acyclic if it has no cycles
A directed acyclic graph is called a DAG

Path
ACD

E

DAG

E

Not a DAG



Is this a DAG?

* [ntuition:
— If it’s a DAG, there must be a vertex with indegree zero

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears
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Is this a DAG?
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— If it’s a DAG, there must be a vertex with indegree zero

* |ntuition:

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears



Is this a DAG?

F

* [ntuition:
— If it’s a DAG, there must be a vertex with indegree zero

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears



Is this a DAG?

A/

[t

YES!

* [ntuition:
— If it’s a DAG, there must be a vertex with indegree zero

* This idea leads to an algorithm

— A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears



Topological Sort

* We just computed a topological sort of the DAG

— This is a numbering of the vertices such that all
edges go from lower- to higher-numbered vertices

— Useful in job scheduling with precedence constraints



Graph Coloring

* A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

* How many colors are needed to color this graph?



Graph Coloring

* A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

* How many colors are needed to color this graph?



An Application of Coloring

Vertices are tasks

Edge (U, V) is present if tasks U and v each require
access to the same shared resource, and thus
cannot execute simultaneously

Colors are time slots to schedule the tasks

Minimum number of colors needed to color the
graph = minimum number of time slots required




Planarity

 Agraphis planarifit can be drawn in the
plane without any edges crossing

* |s this graph planar?
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Planarity
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— Yes!



Detecting Planarity

Kuratowski's Theorem:

K5
KS,S

* Agraph is planar if and only if it does not contain
a copy of Kg or K, 5 (possibly with other nodes
along the edges shown)



Central Balkan Reg iqn

Four-Color Theorem:

Every planar graph is

4-colorable
[Appel & Haken, 1976]

(Every map defines a planar
graph — countries are vertices,
and two adjacent countries T

.
define an edge) ﬁﬂ{im
Scale 1:3,550,000 &
Lambert Conformal Conic Projection,
standard parallels 40 N and 56 N Otranto.
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Another 4-colored planar graph

http://www.cs.cm



Szilassi polyhedron

Torus (donut)
maps are always
7-colorable

Has 7 hexagonal faces,
all of which border

every other face



Bipartite Graphs

* Adirected or undirected graph is bipartite if
the vertices can be partitioned into two sets
such that no edge connects two vertices in
the same set

* The following are equivalent
— G is bipartite
— G is 2-colorable
— G has no cycles of odd length



Some abstract graphs
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Traveling Salesperson

Boston

Find a path of minimum distance that visits every city



Representations of Graphs

1 [/] z
4 3
Adjacency List Adjacency Matrix

[ £ 123 4
101 01
H 20010
30000
40 1 10

OR—E—ER



Adjacency Matrix or Adjacency List?

— N = number of vertices 1

— M = number of edges 10

* Adjacency Matrix 30
— Uses space O(n?) 40
— Enumerate all edges in time O(n?)
— Answer “Is there an edge from uto v?” in O(1) time
— Better for dense graphs (lots of edges)

2 3 4
1 01
— d(u) = degree of U = no. of edges leaving U 20010
00O
110



Adjacency Matrix or Adjacency List?

— N = number of vertices m
— M = number of edges H
* Adjacency List

— Uses space O(m + n) m

— Enumerate all edges in time O(m + n)

— d(u) = degree of U = no. edges leaving U

— Answer “Is there an edge from uto v?” in O(d(u)) time
— Better for sparse graphs (fewer edges)



Graph Algorithms

e Search
— Depth-first search
— Breadth-first search

e Shortest paths
— Dijkstra's algorithm

* Minimum spanning trees
— Prim's algorithm
— Kruskal's algorithm



