
Graphs - I CS 2110, Spring 2016

Announcements

• Reading:

– Chapter 28: Graphs

– Chapter 29: Graph Implementations

These aren’t the graphs we’re interested in

These aren’t the graphs we’re interested in

This is

V.J. Wedeen and L.L. Wald, Martinos Center for Biomedical Imaging at MGH

And so is this

And this

This carries Internet traffic across the oceans

A social graph

An older social graph

An older social graph

Voltaire and Benjamin Franklin

A fictional social graph

A transport graph

Another transport graph

A circuit graph (flip-flop)

A circuit graph (Intel 4004)

A circuit graph (Intel Haswell)

This is not a graph, this is a cat

This is a graph(ical model) that has
learned to recognize cats

Some abstract graphs

K5

K3,3

Directed Graphs

• A directed graph (digraph) is a pair (V, E)
where

– V is a (finite) set

– E is a set of ordered pairs (u, v) where u,v  V

• Often require u ≠ v (i.e. no self-loops)

• An element of V is called a vertex or node

• An element of E is called an edge or arc

• |V| = size of V, often denoted by n

• |E| = size of E, often denoted by m

A

B C

D
E

V = {A, B, C, D, E}

E = {(A,C), (B,A), (B,C),

 (C,D), (D,C)}

|V| = 5

|E| = 5

Undirected Graphs

• An undirected graph is just like a directed

graph!

– … except that E is now a set of unordered

pairs {u, v} where u,v  V

• Every undirected graph can be easily

converted to an equivalent directed

graph via a simple transformation:

– Replace every undirected edge with two

directed edges in opposite directions

• … but not vice versa

A

B C

D
E

V = {A, B, C, D, E}

E = {{A,C}, {B,A},

 {B,C}, {C,D}}

|V| = 5

|E| = 4

Graph Terminology

• Vertices u and v are called
– the source and sink of the directed edge (u, v),

respectively
– the endpoints of (u, v) or {u, v}

• Two vertices are adjacent if they are
connected by an edge

• The outdegree of a vertex u in a directed
graph is the number of edges for which u is
the source

• The indegree of a vertex v in a directed graph
is the number of edges for which v is the sink

• The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint

A

B C

D
E

A

B C

D
E

More Graph Terminology

• A path is a sequence v0,v1,v2,...,vp of vertices
such that for 0 ≤ i < p,

– (vi,vi+1)∈E if the graph is directed

– {vi,vi+1}∈E if the graph is undirected

• The length of a path is its number of edges

– In this example, the length is 2

• A path is simple if it doesn’t repeat any vertices

• A cycle is a path v0,v1,v2,...,vp such that v0 = vp

• A cycle is simple if it does not repeat any
vertices except the first and last

• A graph is acyclic if it has no cycles

• A directed acyclic graph is called a DAG

A

B
C

D
E

A

B
C

D
E

DAG

Not a DAG

Path
A,C,D

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

A

B

C

D

E

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

B

C

D

E

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

C

D

E

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

D

E

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

E

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

F

Is this a DAG?

• Intuition:

– If it’s a DAG, there must be a vertex with indegree zero

• This idea leads to an algorithm

– A digraph is a DAG if and only if we can iteratively delete
indegree-0 vertices until the graph disappears

YES!

Topological Sort

• We just computed a topological sort of the DAG

– This is a numbering of the vertices such that all
edges go from lower- to higher-numbered vertices

– Useful in job scheduling with precedence constraints

1

2

3

4

5

6

Graph Coloring

• A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

• How many colors are needed to color this graph?

A

B

C

D

E

F

Graph Coloring

• A coloring of an undirected graph is an
assignment of a color to each node such that no
two adjacent vertices get the same color

• How many colors are needed to color this graph?

A

B

C

D

E

F

An Application of Coloring

• Vertices are tasks

• Edge (u, v) is present if tasks u and v each require
access to the same shared resource, and thus
cannot execute simultaneously

• Colors are time slots to schedule the tasks

• Minimum number of colors needed to color the
graph = minimum number of time slots required

A

B

C

D

E
F

Planarity

• A graph is planar if it can be drawn in the
plane without any edges crossing

• Is this graph planar?

A

B

C

D

E

F

Planarity

• A graph is planar if it can be drawn in the
plane without any edges crossing

• Is this graph planar?

– Yes!

A

B

C

D

E

F

Planarity

• A graph is planar if it can be drawn in the
plane without any edges crossing

• Is this graph planar?

– Yes!

A

B

C

D

E

F

Detecting Planarity

Kuratowski's Theorem:

• A graph is planar if and only if it does not contain

a copy of K5 or K3,3 (possibly with other nodes

along the edges shown)

K5
K3,3

Four-Color Theorem:

Every planar graph is
4-colorable
[Appel & Haken, 1976]

(Every map defines a planar
graph – countries are vertices,
and two adjacent countries
define an edge)

Another 4-colored planar graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Szilassi polyhedron

Torus (donut)
maps are always
7-colorable

Has 7 hexagonal faces,
all of which border

every other face

Bipartite Graphs

• A directed or undirected graph is bipartite if
the vertices can be partitioned into two sets
such that no edge connects two vertices in
the same set

• The following are equivalent

– G is bipartite

– G is 2-colorable

– G has no cycles of odd length

1

2

3

A

B

C

D

Some abstract graphs

K5

K3,3

=

Traveling Salesperson

Find a path of minimum distance that visits every city

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202

1380

1214

1322

1356

1002

512

216

441

189
160

1556 1323

419

210

224 132

660
505

1078

Representations of Graphs

2 3

2 4

3

1

2

3

4

Adjacency List Adjacency Matrix

1 2

3 4

 1 2 3 4

1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

Adjacency Matrix or Adjacency List?

– n = number of vertices

– m = number of edges

– d(u) = degree of u = no. of edges leaving u

• Adjacency Matrix

– Uses space O(n2)

– Enumerate all edges in time O(n2)

– Answer “Is there an edge from u to v?” in O(1) time

– Better for dense graphs (lots of edges)

 1 2 3 4

1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

– n = number of vertices

– m = number of edges

– d(u) = degree of u = no. edges leaving u

• Adjacency List

– Uses space O(m + n)

– Enumerate all edges in time O(m + n)

– Answer “Is there an edge from u to v?” in O(d(u)) time

– Better for sparse graphs (fewer edges)

2 3

2 4

3

1

2

3

4

Adjacency Matrix or Adjacency List?

Graph Algorithms

• Search

– Depth-first search

– Breadth-first search

• Shortest paths

– Dijkstra's algorithm

• Minimum spanning trees

– Prim's algorithm

– Kruskal's algorithm

