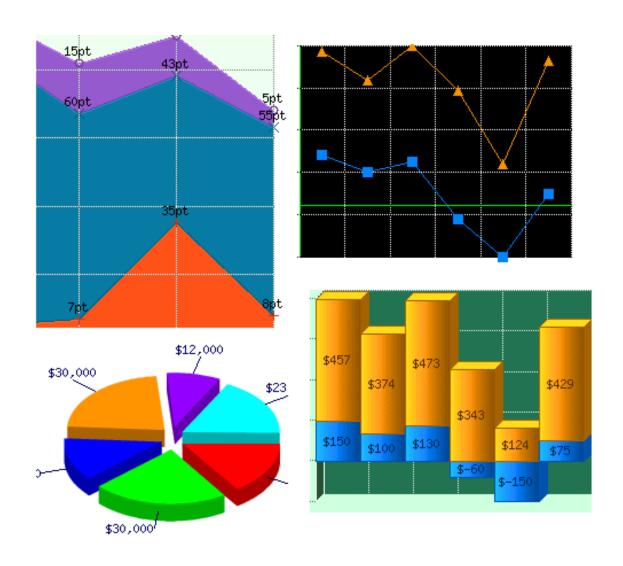


Announcements

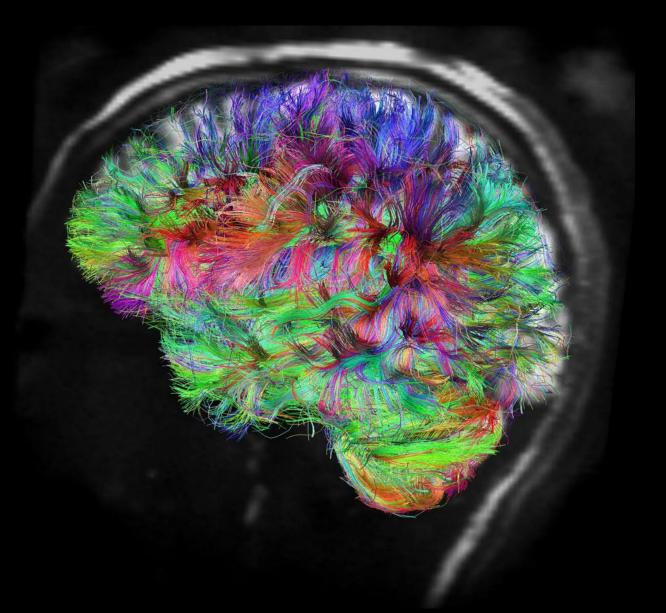
- Reading:
 - Chapter 28: Graphs
 - Chapter 29: Graph Implementations

These aren't the graphs we're interested in

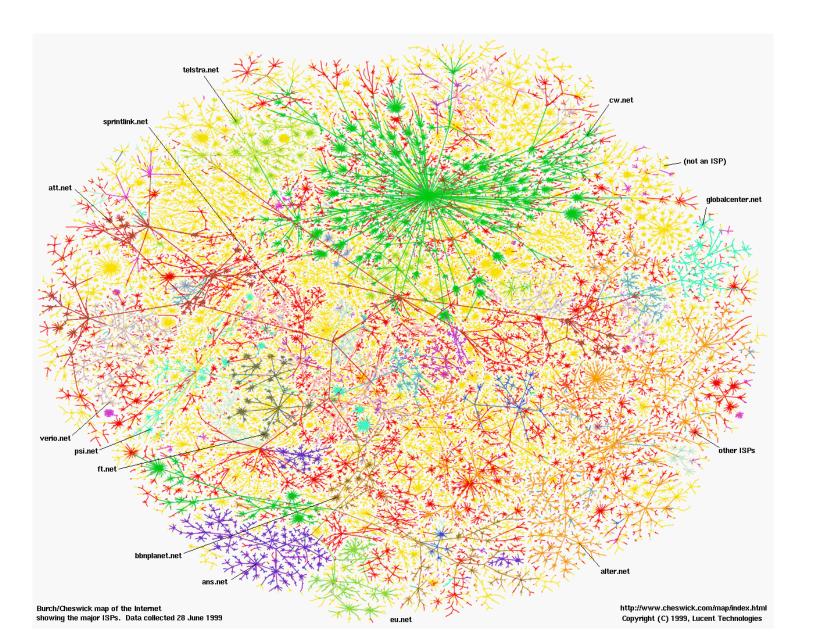


These aren't the graphs we're interested in

This is

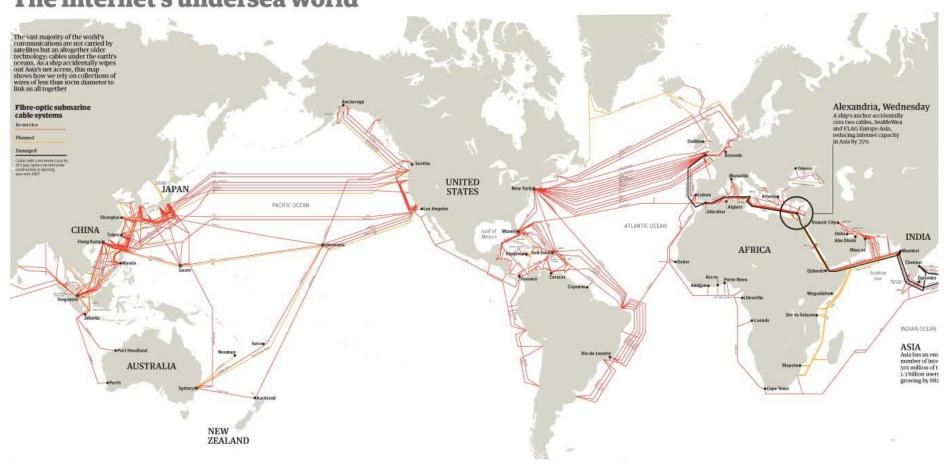


And so is this

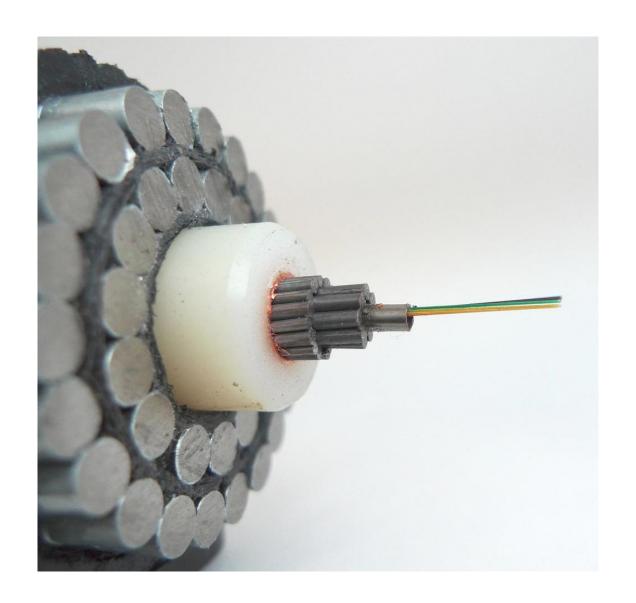


And this

The internet's undersea world

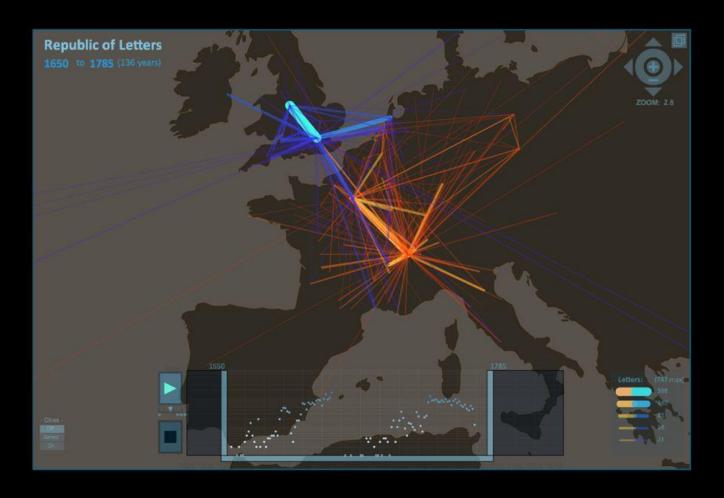


This carries Internet traffic across the oceans



A social graph

An older social graph

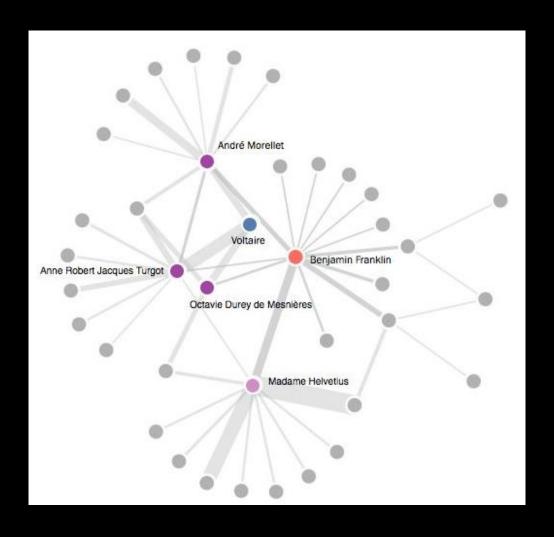


Locke's (blue) and Voltaire's (yellow) correspondence.

Only letters for which complete location information is available are shown.

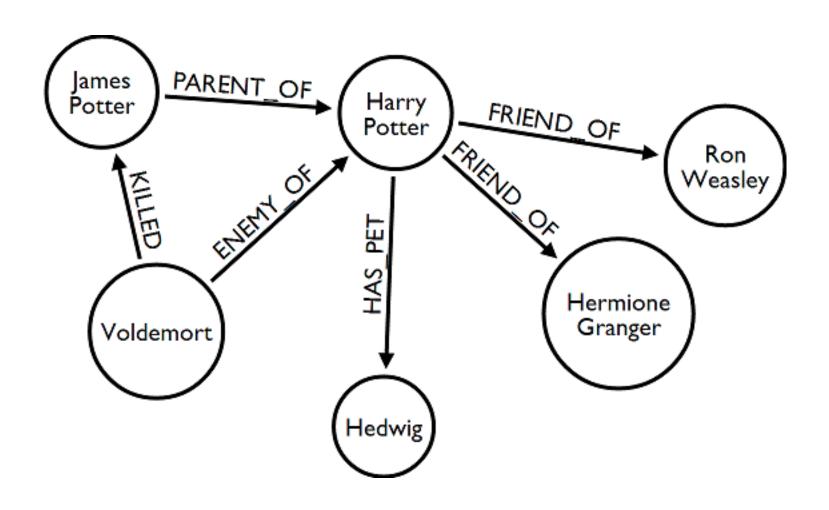
Data courtesy the Electronic Enlightenment Project, University of Oxford.

An older social graph

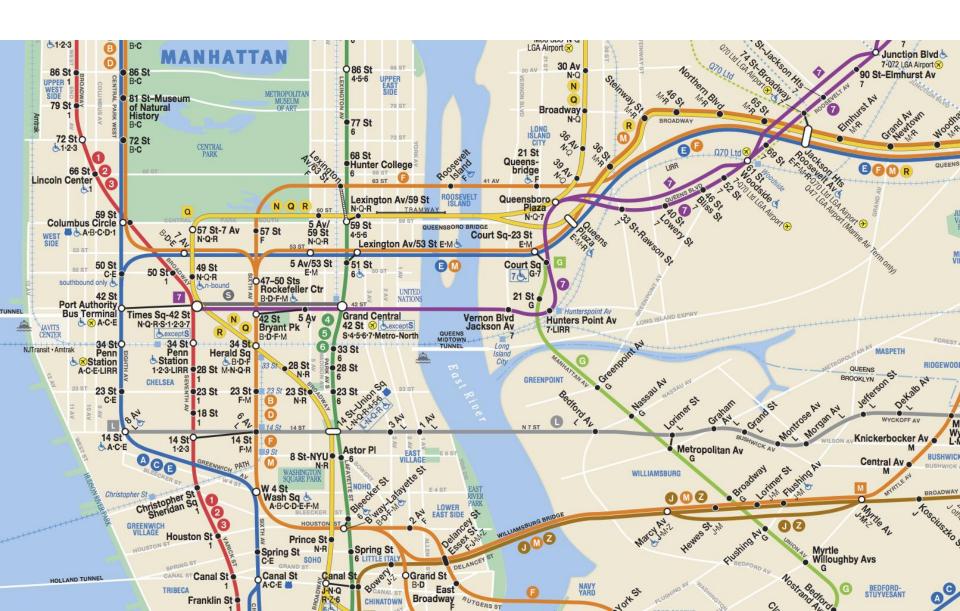


Voltaire and Benjamin Franklin

A fictional social graph

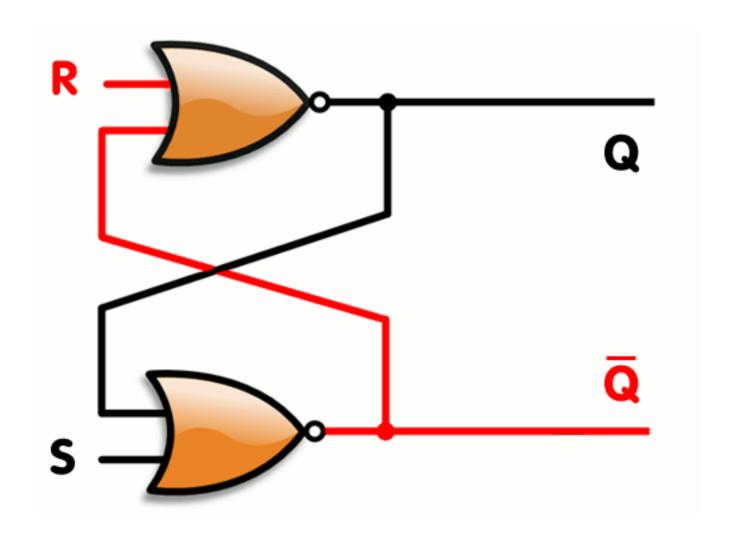


A transport graph

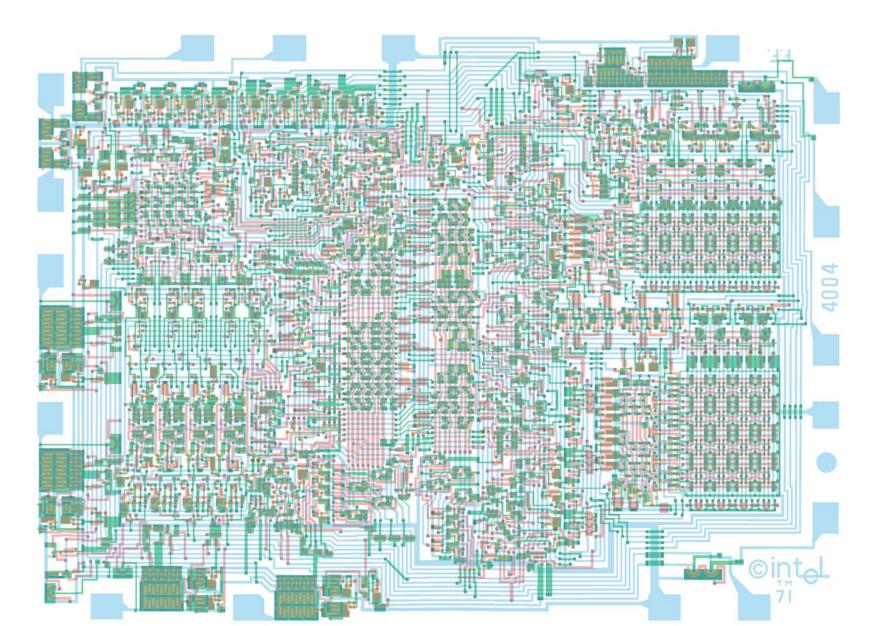


Another transport graph

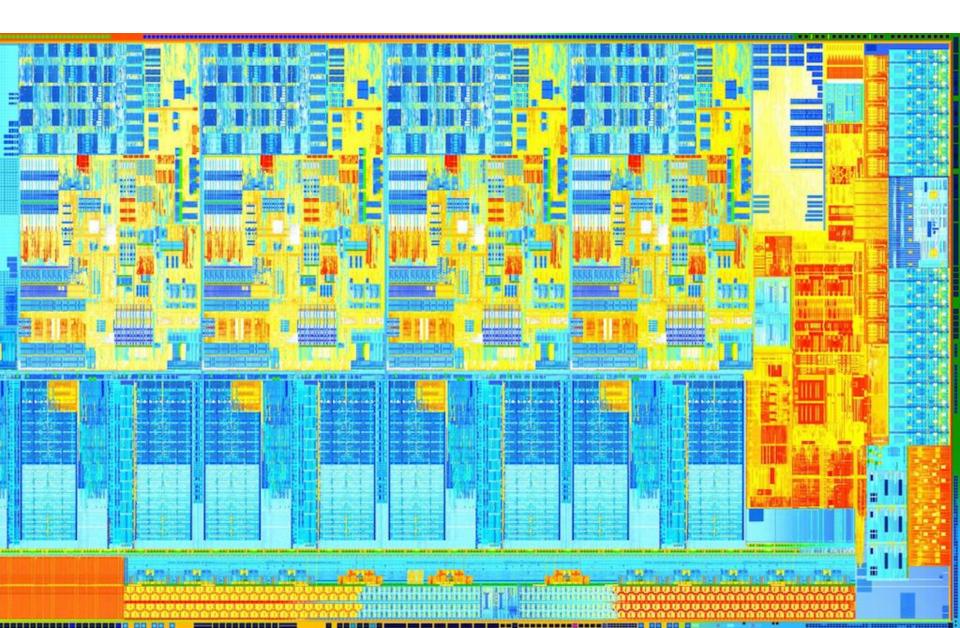
A circuit graph (flip-flop)



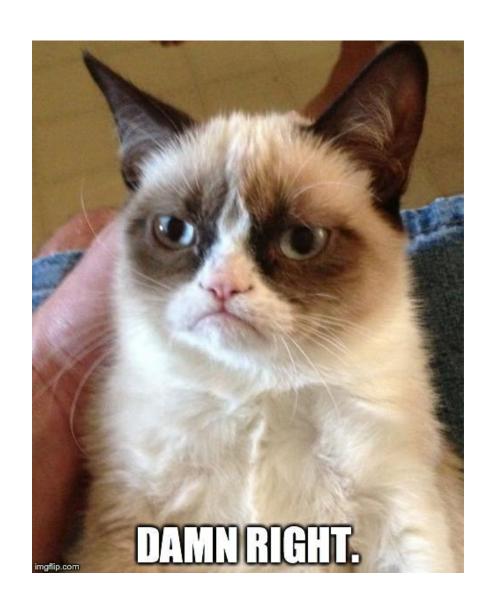
A circuit graph (Intel 4004)



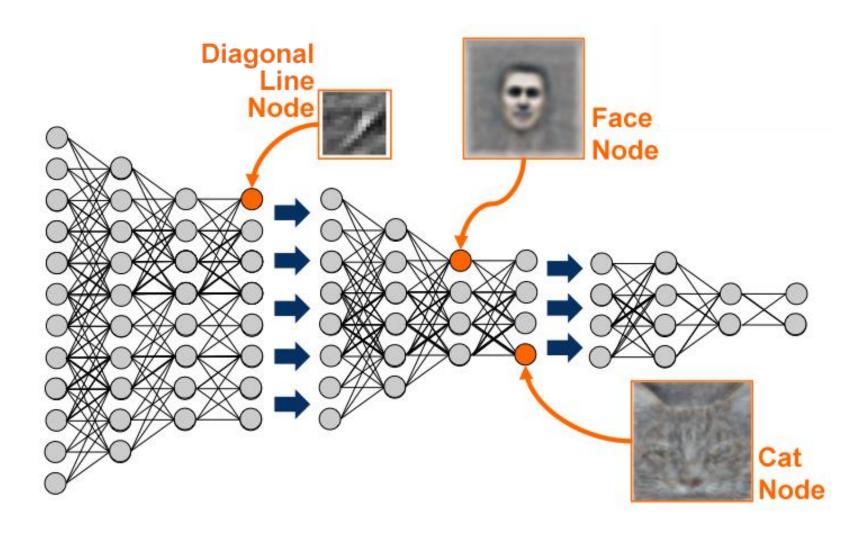
A circuit graph (Intel Haswell)



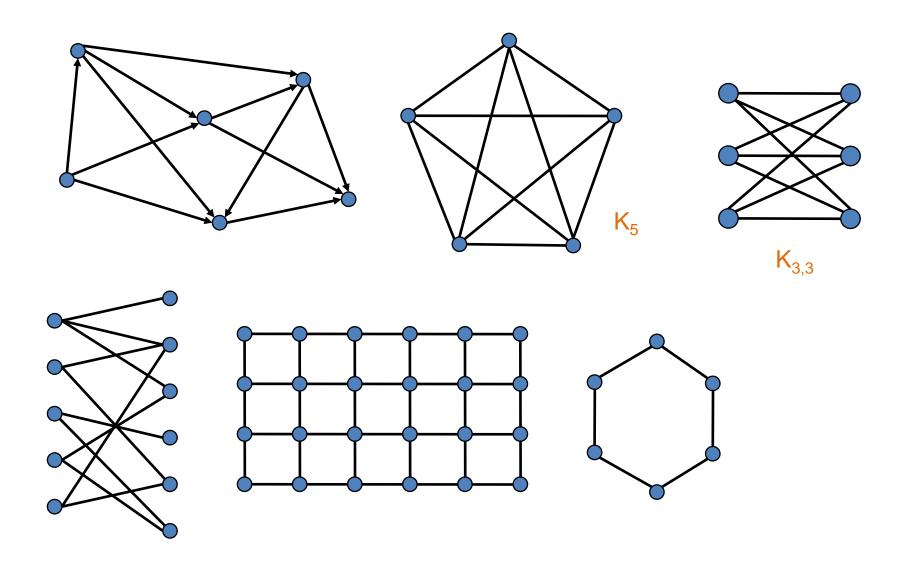
This is not a graph, this is a cat



This is a graph(ical model) that has learned to recognize cats

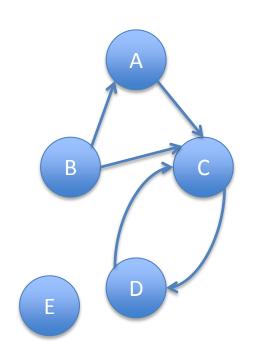


Some abstract graphs



Directed Graphs

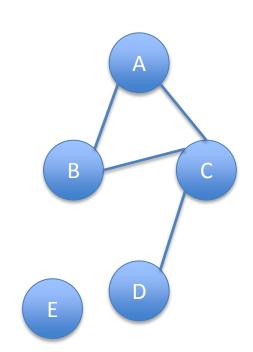
- A directed graph (digraph) is a pair (V, E) where
 - V is a (finite) set
 - E is a set of **ordered** pairs (u, v) where $u, v \in V$
 - Often require $u \neq v$ (i.e. no self-loops)
- An element of V is called a vertex or node
- An element of E is called an edge or arc
- |V| = size of V, often denoted by n
- |E| = size of E, often denoted by m



$$V = \{A, B, C, D, E\}$$
 $E = \{(A,C), (B,A), (B,C), (C,D), (D,C)\}$
 $|V| = 5$
 $|E| = 5$

Undirected Graphs

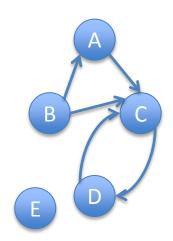
- An undirected graph is just like a directed graph!
 - ... except that E is now a set of **unordered** pairs $\{u, v\}$ where $u, v \in V$
- Every undirected graph can be easily converted to an equivalent directed graph via a simple transformation:
 - Replace every undirected edge with two directed edges in opposite directions
- ... but not vice versa

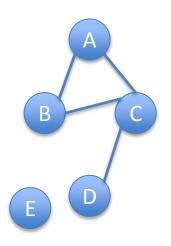


```
V = \{A, B, C, D, E\}
E = \{\{A,C\}, \{B,A\}, \{B,C\}, \{C,D\}\}
|V| = 5
|E| = 4
```

Graph Terminology

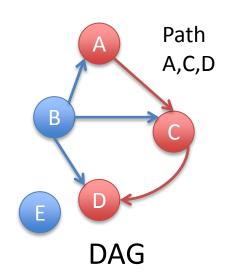
- Vertices u and v are called
 - the source and sink of the directed edge (u, v), respectively
 - the endpoints of (u, v) or $\{u, v\}$
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

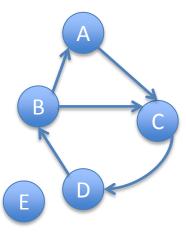




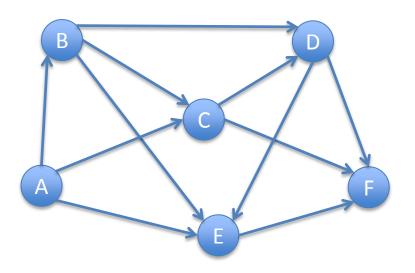
More Graph Terminology

- A path is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that for $0 \le i < p$,
 - $-(v_i,v_{i+1}) \in E$ if the graph is directed
 - $\{v_i, v_{i+1}\} \in E$ if the graph is undirected
- The length of a path is its number of edges
 - In this example, the length is 2
- A path is simple if it doesn't repeat any vertices
- A cycle is a path $v_0, v_1, v_2, ..., v_p$ such that $v_0 = v_p$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a DAG

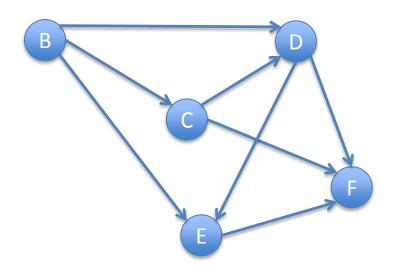




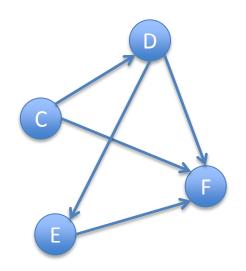
Not a DAG



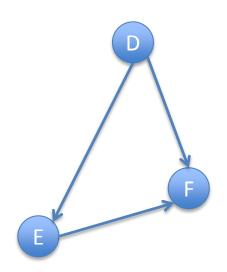
- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears



- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears



- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

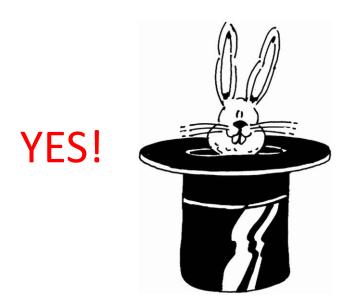


- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

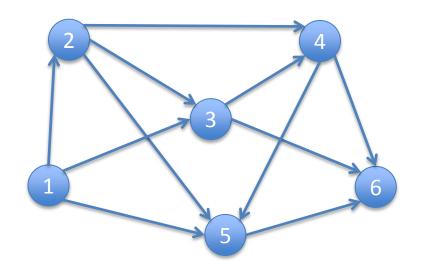
F

- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears



- Intuition:
 - If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
 - A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

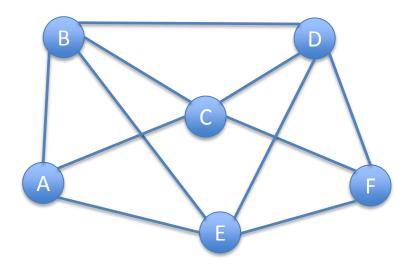
Topological Sort



- We just computed a topological sort of the DAG
 - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices
 - Useful in job scheduling with precedence constraints

Graph Coloring

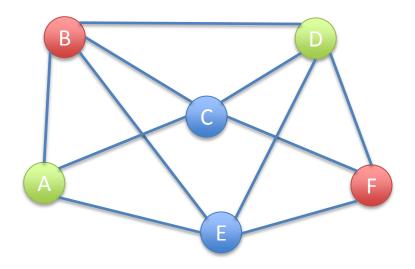
 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color



How many colors are needed to color this graph?

Graph Coloring

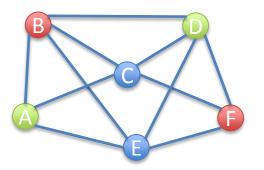
 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color



How many colors are needed to color this graph?

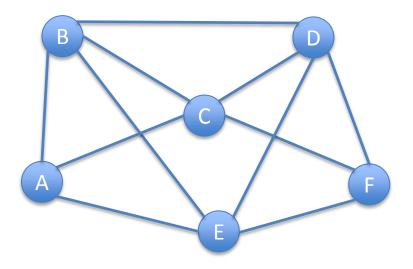
An Application of Coloring

- Vertices are tasks
- Edge (u, v) is present if tasks u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the tasks
- Minimum number of colors needed to color the graph = minimum number of time slots required



Planarity

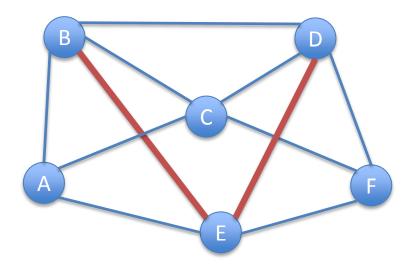
 A graph is planar if it can be drawn in the plane without any edges crossing



• Is this graph planar?

Planarity

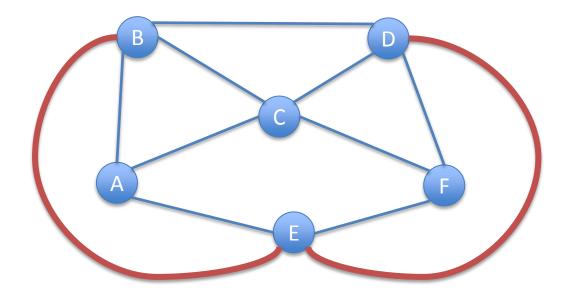
 A graph is planar if it can be drawn in the plane without any edges crossing



- Is this graph planar?
 - Yes!

Planarity

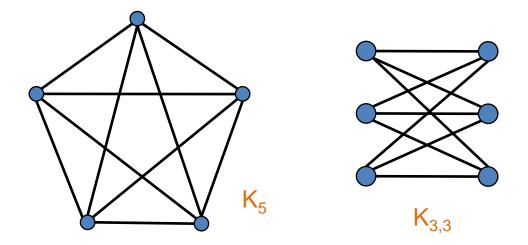
 A graph is planar if it <u>can</u> be drawn in the plane without any edges crossing



- Is this graph planar?
 - Yes!

Detecting Planarity

Kuratowski's Theorem:



• A graph is planar if and only if it does not contain a copy of K_5 or $K_{3,3}$ (possibly with other nodes along the edges shown)

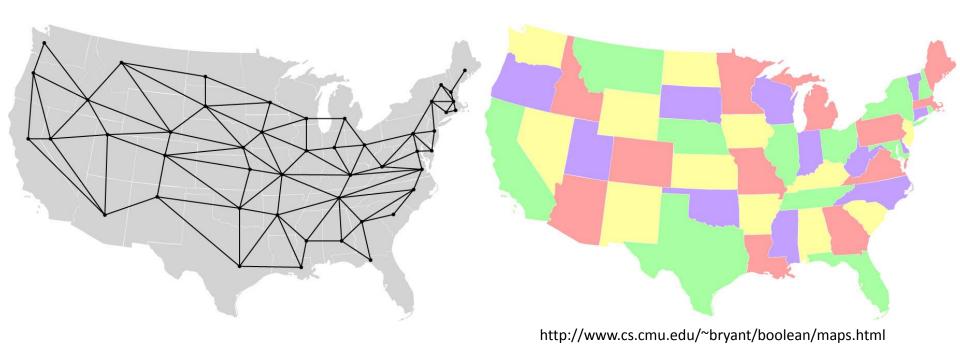
Four-Color Theorem:

Every planar graph is 4-colorable

[Appel & Haken, 1976]

(Every map defines a planar graph – countries are vertices, and two adjacent countries define an edge)

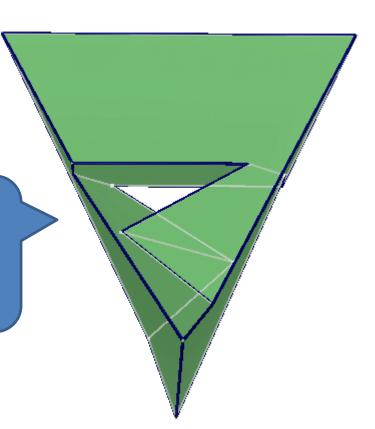
Another 4-colored planar graph



Szilassi polyhedron

Torus (donut)
maps are always
7-colorable

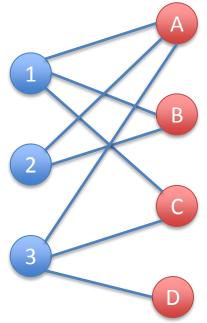
Has 7 hexagonal faces, all of which border every other face



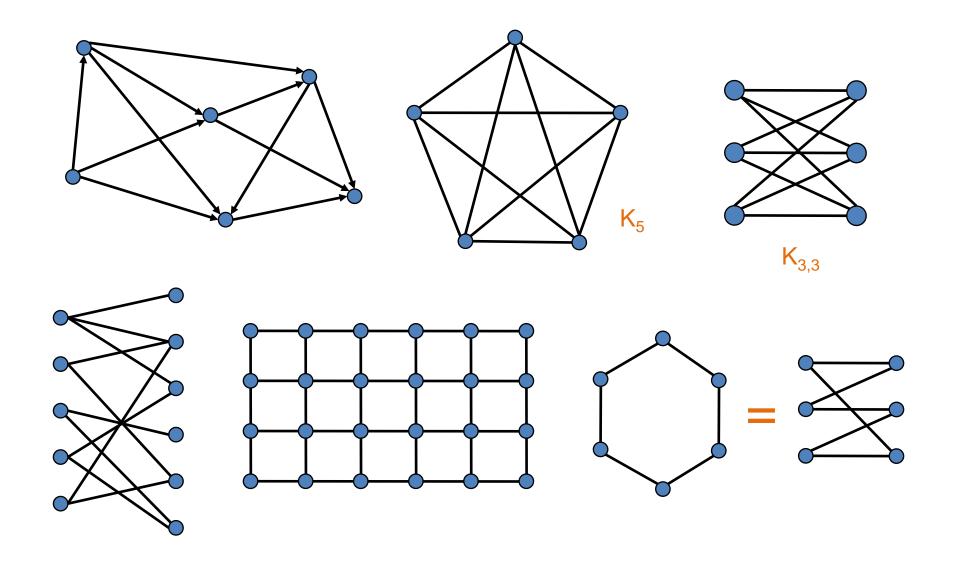
Bipartite Graphs

 A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that no edge connects two vertices in the same set

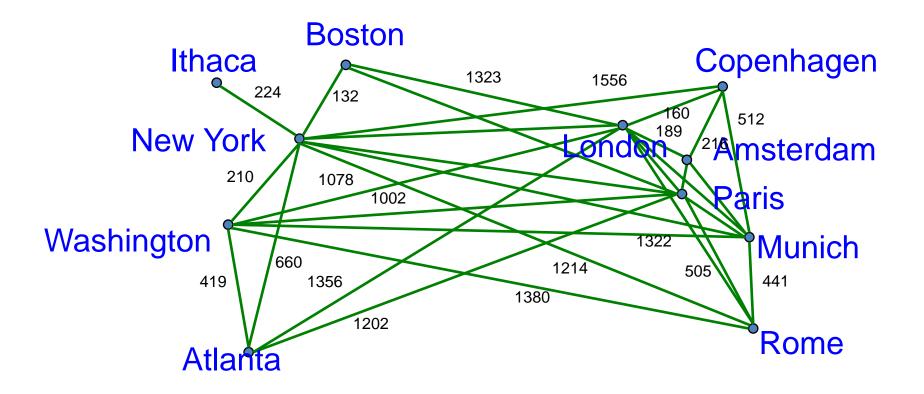
- The following are equivalent
 - G is bipartite
 - − G is 2-colorable
 - -G has no cycles of odd length



Some abstract graphs

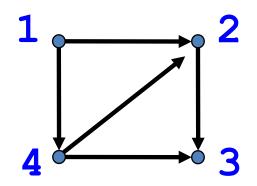


Traveling Salesperson

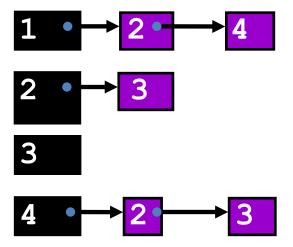


Find a path of minimum distance that visits every city

Representations of Graphs



Adjacency List



Adjacency Matrix

1234101201030004011

Adjacency Matrix or Adjacency List?

```
- n = number of vertices

- m = number of edges

- d(u) = degree of u = no. of edges leaving u

• Adjacency Matrix

- Uses space O(n^2)

1 2 3 4

1 0 1 0 1

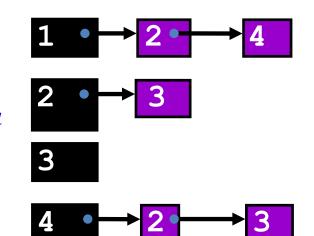
2 0 0 1 0

4 0 1 1 0
```

- Enumerate all edges in time $O(n^2)$
- Answer "Is there an edge from u to v?" in O(1) time
- Better for dense graphs (lots of edges)

Adjacency Matrix or Adjacency List?

- -n = number of vertices
- -m = number of edges
- -d(u) = degree of u = no. edges leaving u
- Adjacency List
 - Uses space O(m + n)
 - Enumerate all edges in time O(m + n)
 - Answer "Is there an edge from u to v?" in O(d(u)) time
 - Better for sparse graphs (fewer edges)



Graph Algorithms

- Search
 - Depth-first search
 - Breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm