

Announcements

- Reading:
- Chapter 28: Graphs
- Chapter 29: Graph Implementations

These aren't the graphs we're interested in

These aren't the graphs we're interested in

And so is this

And this

The internet's undersea world

A social graph

An older social graph

Voltaire and Benjamin Franklin

This carries Internet traffic across the oceans

An older social graph

A fictional social graph

A transport graph

A circuit graph (flip-flop)

A circuit graph (Intel Haswell)

Another transport graph

This is not a graph, this is a cat

This is a graph(ical model) that has
learned to recognize cats

Directed Graphs

- A directed graph (digraph) is a pair (V, E) where
- V is a (finite) set
- E is a set of ordered pairs (u, v) where $u, v \in V$
- Often require $u \neq v$ (i.e. no self-loops)
- An element of V is called a vertex or node
- An element of E is called an edge or arc
- $|V|=$ size of V, often denoted by n
- $|E|=$ size of E, often denoted by m

Graph Terminology

- Vertices u and v are called
- the source and sink of the directed edge (u, v), respectively
- the endpoints of (u, v) or $\{u, v\}$
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

Some abstract graphs

Undirected Graphs

- An undirected graph is just like a directed graph!
- ... except that E is now a set of unordered pairs $\{u, v\}$ where $u, v \in V$
- Every undirected graph can be easily converted to an equivalent directed graph via a simple transformation:
- Replace every undirected edge with two directed edges in opposite directions
- ... but not vice versa

More Graph Terminology

- A path is a sequence $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ of vertices such that for $0 \leq i<p$,
$-\left(v_{i}, v_{i+1}\right) \in E$ if the graph is directed
$-\left\{v_{i}, v_{i+1}\right\} \in E$ if the graph is undirected
- The length of a path is its number of edges - In this example, the length is 2

- A path is simple if it doesn't repeat any vertices
- A cycle is a path $v_{0}, v_{1}, v_{2}, \ldots, v_{p}$ such that $v_{0}=v_{p}$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a DAG

Not a DAG

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a DAG?

- Intuition:
- If it's a DAG, there must be a vertex with indegree zero
- This idea leads to an algorithm
- A digraph is a DAG if and only if we can iteratively delete indegree- 0 vertices until the graph disappears

Graph Coloring

- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

An Application of Coloring

- Vertices are tasks
- Edge (u, v) is present if tasks u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the tasks
- Minimum number of colors needed to color the graph = minimum number of time slots required

Topological Sort

- We just computed a topological sort of the DAG
- This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices - Useful in job scheduling with precedence constraints
- A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

- How many colors are needed to color this graph?

Planarity

- A graph is planar if it can be drawn in the plane without any edges crossing

- Is this graph planar?

Planarity

- A graph is planar if it can be drawn in the plane without any edges crossing

- Is this graph planar?
- Yes!

Detecting Planarity

Kuratowski's Theorem:

K_{33}

- A graph is planar if and only if it does not contain a copy of K_{5} or $K_{3,3}$ (possibly with other nodes along the edges shown)

Planarity

- A graph is planar if it can be drawn in the plane without any edges crossing

- Is this graph planar?
- Yes!

Four-Color Theorem:
Every planar graph is 4-colorable
[Appel \& Haken, 1976]
(Every map defines a planar graph - countries are vertices, and two adjacent countries define an edge)

Another 4-colored planar graph

Szilassi polyhedron

Bipartite Graphs

- A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that no edge connects two vertices in the same set
- The following are equivalent
$-G$ is bipartite
$-G$ is 2-colorable
$-G$ has no cycles of odd length

Traveling Salesperson

Find a path of minimum distance that visits every city

Adjacency Matrix or Adjacency List?

- $n=$ number of vertices	$\mathbf{1}$	2	$\mathbf{3}$	$\mathbf{4}$	
$-m=$ number of edges	1	0	1	0	1
$-d(u)=$ degree of $u=$ no. of edges leaving u	2	0	0	1	0
Adjacency Matrix	$\mathbf{3}$	0	0	0	0
- Uses space $\mathrm{O}\left(n^{2}\right)$	4	0	1	1	0
- Enumerate all edges in time $\mathrm{O}\left(n^{2}\right)$					
- Answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time					
- Better for dense graphs (lots of edges)					

Some abstract graphs

Representations of Graphs

Adjacency Matrix or Adjacency List?

$-n=$ number of vertices
$-m=$ number of edges
$-d(u)=$ degree of $u=$ no. edges leaving u

- Adjacency List
- Uses space $\mathrm{O}(m+n)$

- Enumerate all edges in time $\mathrm{O}(m+n)$
- Answer "Is there an edge from u to v ?" in $\mathrm{O}(d(u))$ time
- Better for sparse graphs (fewer edges)

Graph Algorithms

- Search
- Depth-first search
- Breadth-first search
- Shortest paths
- Dijkstra's algorithm
- Minimum spanning trees
- Prim's algorithm
- Kruskal's algorithm

