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Readings and Homework 

Read Chapter 26 “A Heap Implementation” to learn about heaps 
 

Exercise: Salespeople often make matrices that show all the great 
features of their product that the competitor’s product lacks.  Try this 
for a heap versus a BST.  First, try and  

sell someone on a BST: List some  
desirable properties of a BST 
that a heap lacks.  Now be the heap 
salesperson: List some good things  
about heaps that a BST lacks.  Can  
you think of situations where you  
would favor one over the other? 
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With ZipUltra heaps, you’ve got it 
made in the shade my friend! 



Stacks and queues are restricted lists 

•  Stack (LIFO) implemented as list 
– add(), remove() from front of list (push and pop) 

•  Queue (FIFO) implemented as list 

– add() on back of list, remove() from front of list 

•  These operations are O(1) 

55 12 19 16 head 

tail 
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Both efficiently implementable using a 
singly linked list with head and tail 



Interface Bag (not In Java Collections) 

interface	Bag<E>	
							implements	Iterable	{	
			void	add(E	obj);	
			boolean	contains(E	obj);	
			boolean	remove(E	obj);	
			int	size();		
			boolean	isEmpty();	
			Iterator<E>	iterator()	
}	

Refinements of Bag: Stack, Queue, PriorityQueue 
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Also called multiset 
 
Like a set except 
that a value can be 
in it more than 
once. Example: a 
bag of coins 



Priority queue 

•  Bag in which data items are Comparable 

•  Smaller elements (determined by compareTo()) have higher 
priority 

• remove() return the element with the highest priority = least 
element in the compareTo() ordering 

•  break ties arbitrarily 
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Many uses of priority queues (& heaps) 

¨  Event-driven simulation: customers in a line 
¨  Collision detection: "next time of contact" for colliding bodies 

¨  Graph searching: Dijkstra's algorithm, Prim's algorithm  

¨  AI Path Planning: A* search  

¨  Statistics: maintain largest M values in a sequence  

¨  Operating systems: load balancing, interrupt handling  
¨  Discrete optimization: bin packing, scheduling  
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Surface simplification [Garland and Heckbert 1997] 



java.util.PriorityQueue<E> 
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interface	PriorityQueue<E>	{														TIME	
	boolean	add(E	e)	{...}	//insert	e.							log	
	void	clear()	{...}	//remove	all	elems.	
	E	peek()	{...}	//return	min	elem.								constant	
	E	poll()	{...}	//remove/return	min	elem.	log	
	boolean	contains(E	e)																				linear	
	boolean	remove(E	e)																						linear	
	int	size()	{...}																									constant	
	Iterator<E>	iterator()	
}	



Priority queues as lists 
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•  Maintain as unordered list 
– add()      put new element at front – O(1) 
– poll()        must search the list – O(n) 
– peek()       must search the list – O(n) 

•  Maintain as ordered list 
– add()       must search the list – O(n) 
– poll()         wamted element at top – O(1) 
– peek()       O(1) 
 

Can we do better? 



Heap 
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•  A heap is a concrete data structure that can be used 
to implement priority queues 

•  Gives better complexity than either ordered or 
unordered list implementation: 
– add():  O(log n)       (n is the size of the heap) 
– poll(): O(log n) 

•  O(n log n) to process n elements 
•  Do not confuse with heap memory, where the Java 

virtual machine allocates space for objects – different 
usage of the word heap 
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14 6 

21 19 8 35 

22 55 38 10 20 

Every element is >= its parent 

Note: 19, 20 < 35: Smaller elements 
can be deeper in the tree! 

Heap: first property 
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14 6 

21 19 8 35 

22 55 38 10 20 

Heap: second property: is complete, has no holes 11 

Every level (except last) 
completely filled. 

Nodes on bottom level 
are as far left as 
possible.  
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14 6 

21 19 8 

22 55 10 20 

Not a heap because it 
has two holes 

missing  nodes 

Heap: Second property: has no “holes” 
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Not a heap because: 
•  missing a node on level 2 

•  bottom level nodes are not as far left as possible 



Heap 
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•  Binary tree with data at each node 
•  Satisfies the Heap Order Invariant: 

 

•  Binary tree is complete (no holes) 

1.  Every element is ≥ its parent. 

2. Every level (except last) completely filled. 
Nodes on bottom level are as far left as possible. 
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14 6 

21 8 35 

22 55 

0 

Numbering the nodes in a heap 
14 

1 2 

3 

9 

6 5 

7 8 

4 

Number node starting at 
root in breadth-first 
left-right order 

Children of node k are nodes   2k+1  and  2k+2 
Parent of node k is node (k-1)/2  

19 

38 



•  Heap nodes in b in order, going across each level from 
left to right, top to bottom 

•  Children of b[k] are b[2k + 1] and b[2k + 2] 

•  Parent of b[k] is b[(k – 1)/2] 

Can store a heap in an array b 
(could also be ArrayList or Vector) 
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0  1  2  3  4  5  6  7  8  9   

Tree structure is implicit. 
No need for explicit links! 

to parent 

to children 
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21 19 8 35 

22 55 38 10 20 
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add(e) 
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22 55 38 10 20 5 
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add(e) 

1. Put in the new element in a new node 
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add() 

2. Bubble new element up if less than parent 
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2. Bubble new element up if less than parent 
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add() 

1. Put in the new element in a new node 
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add() 

2. Bubble new element up if less than parent 
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add() 

2. Bubble new element up if less than parent 
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add() 

2. Bubble new element up if less than parent 
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add() 



•  Add e at the end of the array 

•  Bubble e up until it no longer violateds heap order 
 
•  The heap invariant is maintained! 

add(e) 
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• Time is O(log n), since the tree is balanced 

– size of tree is exponential as a function of depth 

– depth of tree is logarithmic as a function of size 
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add() to a tree of size n 



/**	An	instance	of	a	heap	*/	
class	Heap<E>	{	
		E[]	b=	new	E[50];		//	heap	is	b[0..n-1]	
		int	n=	0;										//	heap	invariant	is	true	
	
		/**	Add	e	to	the	heap	*/	
		public	void	add(E	e)	{	
				b[n]=	e;	
				n=	n	+	1;		
				bubbleUp(n	-	1);	//	given	on	next	slide	
		}	
}	
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add()  --assuming there is space 



class	Heap<E>	{	
		/**	Bubble	element	#k	up	to	its	position.	
				*	Pre:	heap	inv	holds	except	maybe	for	k	*/	
		private	void	bubbleUp(int	k)	{	
	
				//	inv:	p	is	parent	of	k	and	every	elmnt	
				//	except	perhaps	k	is	>=	its	parent	
				while	(																																			)	{	
	
	
	
			}	
}	
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add(). Remember, heap is in b[0..n-1] 

int	p=	(k-1)/2;				

k	>	0		&&		b[k].compareTo(b[p])	<	0 
swap(b[k],	b[p]);	
k=	p;	
p=	(k-1)/2;	



4 

5 6 

21 14 8 35 

22 55 38 10 20 19 
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poll() 
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22 55 38 10 20 19 
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poll() 

1. Save top element in a local variable 
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poll() 

2. Assign last value to the root, delete last value from heap 



5 6 

21 14 8 35 

22 55 38 10 20 

19 4 
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poll() 

3. Bubble root value down 
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poll() 

3. Bubble root value down 
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poll() 

3. Bubble root value down 
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poll() 

1. Save top element in a local variable 
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poll() 

2. Assign last value to the root, delete last value from heap 
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poll() 

2. Assign last value to the root, delete last value from heap 
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poll() 

3. Bubble root value down 
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poll() 

3. Bubble root value down 
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poll() 

3. Bubble root value down 
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poll() 
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poll() 

3. Bubble root value down 



•  Remove and save the least element  – (at the root) 
•  This leaves a hole at the root – Move last element of 

the heap to the root. 
•  Bubble element down –always with smaller child, until 

heap invariant is true again. 
•  The heap invariant is maintained! 
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poll() 

Time is O(log n), since the tree is balanced 



	/**	Remove	and	return	the	smallest	element		
			*	(return	null	if	list	is	empty)	*/	
	public	E	poll()	{	
					if	(n	==	0)	return	null;	
					E	v=		b[0];			//	smallest	value	at	root.	
					n=	n	–	1;					//	move	last	
					b[0]=	b[n];			//	element	to	root	
					bubbleDown(0);	
					return	v;	
	}	
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poll(). Remember, heap is in b[0..n-1] 



	/**	Tree	has	n	node.	
		*		Return	index	of	smaller	child	of	node	k	
					(2k+2	if	k	>=	n)	*/	
	public	int	smallerChild(int	k,	int	n)	{	
				int	c=	2*k	+	2;					//	k’s	right	child	
				if	(c	>=	n	||	b[c-1].compareTo(b[c])	<	0)	
							c=	c-1;	
				return	c;	
	}	
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c’s smaller child 



/**	Bubble	root	down	to	its	heap	position.	
				Pre:	b[0..n-1]	is	a	heap	except	maybe	b[0]	*/	
private	void	bubbleDown()	{	
	
	
			//	inv:	b[0..n-1]	is	a	heap	except	maybe	b[k]	AND	
			//						b[c]	is	b[k]’s	smallest	child	
			while	(																																						)	{	
	
	
	
	
		}					
}	
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int	k=	0;	
int	c=	smallerChild(k,	n);			

c	<	n	&&		b[k].compareTo(b[c])	>	0 

swap(b[k],	b[c]);	
k=	c;	
c=	smallerChild(k,	n);	



Change heap behaviour a bit 

Separate priority from value and do this: 
   add(e, p);  //add element e with priority p (a double) 

                                                          THIS IS EASY! 
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Be able to change priority 
   change(e, p);  //change priority of e to p 

                                                          THIS IS HARD! 

 Big question: How do we find e in the heap? 
Searching heap takes time proportional to its size! No good! 
Once found, change priority and bubble up or down. OKAY 

Assignment A6: implement this heap! Use a second data 
structure to make change-priority expected log n time 



HeapSort(b, n)   —Sort b[0..n-1] 
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1.  Make b[0..n-1] into a max-heap (in place) 
 
2.  for (k= n-1; k > 0; k= k-1) { 
             b[k]= poll –i.e. take max element out of heap. 
      } 

A max-heap has max value at root 

Whet your appetite –use heap to get exactly n log n  
in-place sorting algorithm. 2 steps, each is O(n log n) 

We’ll post this algorithm on course website 


