
PRIORITY QUEUES AND
HEAPS
Lecture 17
CS2110 Spring 2016

Readings and Homework

Read Chapter 26 “A Heap Implementation” to learn about heaps

Exercise: Salespeople often make matrices that show all the great
features of their product that the competitor’s product lacks. Try this
for a heap versus a BST. First, try and

sell someone on a BST: List some
desirable properties of a BST
that a heap lacks. Now be the heap
salesperson: List some good things
about heaps that a BST lacks. Can
you think of situations where you
would favor one over the other?

2

With ZipUltra heaps, you’ve got it
made in the shade my friend!

Stacks and queues are restricted lists

•  Stack (LIFO) implemented as list
– add(), remove() from front of list (push and pop)

•  Queue (FIFO) implemented as list

– add() on back of list, remove() from front of list

•  These operations are O(1)

55 12 19 16 head

tail

3

Both efficiently implementable using a
singly linked list with head and tail

Interface Bag (not In Java Collections)

interface	Bag<E>	
							implements	Iterable	{	
			void	add(E	obj);	
			boolean	contains(E	obj);	
			boolean	remove(E	obj);	
			int	size();		
			boolean	isEmpty();	
			Iterator<E>	iterator()	
}	

Refinements of Bag: Stack, Queue, PriorityQueue

4

Also called multiset

Like a set except
that a value can be
in it more than
once. Example: a
bag of coins

Priority queue

•  Bag in which data items are Comparable

•  Smaller elements (determined by compareTo()) have higher
priority

• remove() return the element with the highest priority = least
element in the compareTo() ordering

•  break ties arbitrarily

5

Many uses of priority queues (& heaps)

¨  Event-driven simulation: customers in a line
¨  Collision detection: "next time of contact" for colliding bodies

¨  Graph searching: Dijkstra's algorithm, Prim's algorithm

¨  AI Path Planning: A* search

¨  Statistics: maintain largest M values in a sequence

¨  Operating systems: load balancing, interrupt handling
¨  Discrete optimization: bin packing, scheduling

6

Surface simplification [Garland and Heckbert 1997]

java.util.PriorityQueue<E>
7

interface	PriorityQueue<E>	{														TIME	
	boolean	add(E	e)	{...}	//insert	e.							log	
	void	clear()	{...}	//remove	all	elems.	
	E	peek()	{...}	//return	min	elem.								constant	
	E	poll()	{...}	//remove/return	min	elem.	log	
	boolean	contains(E	e)																				linear	
	boolean	remove(E	e)																						linear	
	int	size()	{...}																									constant	
	Iterator<E>	iterator()	
}	

Priority queues as lists
8

•  Maintain as unordered list
– add() put new element at front – O(1)
– poll() must search the list – O(n)
– peek() must search the list – O(n)

•  Maintain as ordered list
– add() must search the list – O(n)
– poll() wamted element at top – O(1)
– peek() O(1)

Can we do better?

Heap
9

•  A heap is a concrete data structure that can be used
to implement priority queues

•  Gives better complexity than either ordered or
unordered list implementation:
– add(): O(log n) (n is the size of the heap)
– poll(): O(log n)

•  O(n log n) to process n elements
•  Do not confuse with heap memory, where the Java

virtual machine allocates space for objects – different
usage of the word heap

4

14 6

21 19 8 35

22 55 38 10 20

Every element is >= its parent

Note: 19, 20 < 35: Smaller elements
can be deeper in the tree!

Heap: first property
10

4

14 6

21 19 8 35

22 55 38 10 20

Heap: second property: is complete, has no holes 11

Every level (except last)
completely filled.

Nodes on bottom level
are as far left as
possible.

4

14 6

21 19 8

22 55 10 20

Not a heap because it
has two holes

missing nodes

Heap: Second property: has no “holes”
12

Not a heap because:
•  missing a node on level 2

•  bottom level nodes are not as far left as possible

Heap
13

•  Binary tree with data at each node
•  Satisfies the Heap Order Invariant:

•  Binary tree is complete (no holes)

1. Every element is ≥ its parent.

2. Every level (except last) completely filled.
Nodes on bottom level are as far left as possible.

4

14 6

21 8 35

22 55

0

Numbering the nodes in a heap
14

1 2

3

9

6 5

7 8

4

Number node starting at
root in breadth-first
left-right order

Children of node k are nodes 2k+1 and 2k+2
Parent of node k is node (k-1)/2

19

38

•  Heap nodes in b in order, going across each level from
left to right, top to bottom

•  Children of b[k] are b[2k + 1] and b[2k + 2]

•  Parent of b[k] is b[(k – 1)/2]

Can store a heap in an array b
(could also be ArrayList or Vector)

15

0 1 2 3 4 5 6 7 8 9

Tree structure is implicit.
No need for explicit links!

to parent

to children

4

14 6

21 19 8 35

22 55 38 10 20

16

add(e)

4

14 6

21 19 8 35

22 55 38 10 20 5

17

add(e)

1. Put in the new element in a new node

4

14 6

21

19

8 35

22 55 38 10 20

5

18

add()

2. Bubble new element up if less than parent

4

14

6

21

19

8 35

22 55 38 10 20

5

19

add()

2. Bubble new element up if less than parent

4

14

6

21

19

8 35

22 55 38 10 20

5

20

add()

4

14

6

21

19

8 35

22 55 38 10 20

5

2

21

add()

1. Put in the new element in a new node

4

14

6

21

19

8

35 22 55 38 10 20

5

2

22

add()

2. Bubble new element up if less than parent

4

14

6

21

19

8

35 22 55 38 10 20

2

5

23

add()

2. Bubble new element up if less than parent

2

14

6

21

19

8

35 22 55 38 10 20

4

5

24

add()

2. Bubble new element up if less than parent

2

14

6

21

19

8

35 22 55 38 10 20

4

5

25

add()

•  Add e at the end of the array

•  Bubble e up until it no longer violateds heap order

•  The heap invariant is maintained!

add(e)
26

• Time is O(log n), since the tree is balanced

– size of tree is exponential as a function of depth

– depth of tree is logarithmic as a function of size

27

add() to a tree of size n

/**	An	instance	of	a	heap	*/	
class	Heap<E>	{	
		E[]	b=	new	E[50];		//	heap	is	b[0..n-1]	
		int	n=	0;										//	heap	invariant	is	true	
	
		/**	Add	e	to	the	heap	*/	
		public	void	add(E	e)	{	
				b[n]=	e;	
				n=	n	+	1;		
				bubbleUp(n	-	1);	//	given	on	next	slide	
		}	
}	

28

add() --assuming there is space

class	Heap<E>	{	
		/**	Bubble	element	#k	up	to	its	position.	
				*	Pre:	heap	inv	holds	except	maybe	for	k	*/	
		private	void	bubbleUp(int	k)	{	
	
				//	inv:	p	is	parent	of	k	and	every	elmnt	
				//	except	perhaps	k	is	>=	its	parent	
				while	()	{	
	
	
	
			}	
}	

29

add(). Remember, heap is in b[0..n-1]

int	p=	(k-1)/2;				

k	>	0		&&		b[k].compareTo(b[p])	<	0
swap(b[k],	b[p]);	
k=	p;	
p=	(k-1)/2;	

4

5 6

21 14 8 35

22 55 38 10 20 19

30

poll()

5 6

21 14 8 35

22 55 38 10 20 19

4

31

poll()

1. Save top element in a local variable

5 6

21 14 8 35

22 55 38 10 20 19

4

32

poll()

2. Assign last value to the root, delete last value from heap

5 6

21 14 8 35

22 55 38 10 20

19 4

33

poll()

3. Bubble root value down

5

6

21 14 8 35

22 55 38 10 20

19

4

34

poll()

3. Bubble root value down

5

6

21

14

8 35

22 55 38 10 20

19

4

35

poll()

3. Bubble root value down

5

6

21

14

8 35

22 55 38 10 20

4

19

36

poll()

1. Save top element in a local variable

6

21

14

8 35

22 55 38 10 20

4 5

19

37

poll()

2. Assign last value to the root, delete last value from heap

6

21

14

8 35

22 55 38 10 20

19

4 5

38

poll()

2. Assign last value to the root, delete last value from heap

6

21

14

8 35

22 55 38 10

20

19

4 5

39

poll()

3. Bubble root value down

6

21

14

8 35

22 55 38 10

20

19

4 5

40

poll()

3. Bubble root value down

6

21

14 8

35

22 55 38 10

20 19

4 5

41

poll()

3. Bubble root value down

6

21

14 8

35

22 55 38

10

20

19

4 5

42

poll()

6

21

14 8

35

22 55 38

10 19

20

4 5

43

poll()

3. Bubble root value down

•  Remove and save the least element – (at the root)
•  This leaves a hole at the root – Move last element of

the heap to the root.
•  Bubble element down –always with smaller child, until

heap invariant is true again.
•  The heap invariant is maintained!

44

poll()

Time is O(log n), since the tree is balanced

	/**	Remove	and	return	the	smallest	element		
			*	(return	null	if	list	is	empty)	*/	
	public	E	poll()	{	
					if	(n	==	0)	return	null;	
					E	v=		b[0];			//	smallest	value	at	root.	
					n=	n	–	1;					//	move	last	
					b[0]=	b[n];			//	element	to	root	
					bubbleDown(0);	
					return	v;	
	}	

45

poll(). Remember, heap is in b[0..n-1]

	/**	Tree	has	n	node.	
		*		Return	index	of	smaller	child	of	node	k	
					(2k+2	if	k	>=	n)	*/	
	public	int	smallerChild(int	k,	int	n)	{	
				int	c=	2*k	+	2;					//	k’s	right	child	
				if	(c	>=	n	||	b[c-1].compareTo(b[c])	<	0)	
							c=	c-1;	
				return	c;	
	}	

46

c’s smaller child

/**	Bubble	root	down	to	its	heap	position.	
				Pre:	b[0..n-1]	is	a	heap	except	maybe	b[0]	*/	
private	void	bubbleDown()	{	
	
	
			//	inv:	b[0..n-1]	is	a	heap	except	maybe	b[k]	AND	
			//						b[c]	is	b[k]’s	smallest	child	
			while	()	{	
	
	
	
	
		}					
}	

47

int	k=	0;	
int	c=	smallerChild(k,	n);			

c	<	n	&&		b[k].compareTo(b[c])	>	0

swap(b[k],	b[c]);	
k=	c;	
c=	smallerChild(k,	n);	

Change heap behaviour a bit

Separate priority from value and do this:
 add(e, p); //add element e with priority p (a double)

 THIS IS EASY!

48

Be able to change priority
 change(e, p); //change priority of e to p

 THIS IS HARD!

 Big question: How do we find e in the heap?
Searching heap takes time proportional to its size! No good!
Once found, change priority and bubble up or down. OKAY

Assignment A6: implement this heap! Use a second data
structure to make change-priority expected log n time

HeapSort(b, n) —Sort b[0..n-1]
49

1.  Make b[0..n-1] into a max-heap (in place)

2.  for (k= n-1; k > 0; k= k-1) {
 b[k]= poll –i.e. take max element out of heap.
 }

A max-heap has max value at root

Whet your appetite –use heap to get exactly n log n
in-place sorting algorithm. 2 steps, each is O(n log n)

We’ll post this algorithm on course website

