CS2110. GUIS: Listening to Events

Also

anonymous classes

Download the demo zip file from
course website and look at the demos
of GUI things: sliders, scroll bars,
combobox listener, etc

Making use of the recursive definition of a tree
in a recursive function

trees

for (DiseaseTree d : dt.children) {

if (d.root == p) { ... } (in some cases it may

be ok, but rarely)

Testing d.root or any field of d complicates the picture terribly.
Destroys the natural recursive definition. Don’t do it!
2

Trees are everywhere

mainBox
boardBox infoBox
row . row JButton
JButton
JButton

Square ... Square Square ... Square JLabel
Layout Manager for Checkers JLaielb |
game has to process a tree abe

boardBox: vertical Box

pack(): Traverse the tree, row: horizontal Box
determining the space required Square: Canvas or JPanel
for each component infoBox: vertical Box

Listening to events: mouse click, mouse movement
into or out of a window, a keystroke, etc.

* An event is a mouse click, a mouse movement into or out of a
window, a keystroke, etc.

« To be able to “listen to” a kind of event, you have to:

1. Have some class C implement an interface IN that is
connected with the event.

2. In class C, override methods required by interface IN; these
methods are generally called when the event happens.

3. Register an object of class C as a /istener for the event. That
object’s methods will be called when event happens.

We show you how to do this for clicks on buttons, clicks on
components, and keystrokes.

What is a JButton?
Instance: associated with a “button” on the GUI,
which can be clicked to do something

jbl=new JButton() // jbl has no text on it

jb2=new JButton(“first”) //jb2 has label “first” on it

jb2.isEnabled() // true iff a click on button can be
// detected

jb2.setEnabled(b); /I Set enabled property

jb2.addActionListener(object); // object must have a method
// that is called when button jb2 clicked (next page)

At least 100 more methods; these are most important

JButton is in package javax.swing
5

Listening to a JButton

I. Implement interface ActionListener:
public class C extends JFrame implements
ActionListener {

}

2. In class C override actionPerformed, which is to be called

when button is clicked:
/¥ Process click of button */
public void actionPerformed(ActionEvent e) {

}

3. Add an instance of class C an “action listener” for button:
button.addActionListener(this);

/** Object has two buttons. Exactly one is enabled. */ 4. listening

class ButtonDemol extends JFrame

implements ActionListener { blue:|placing

/** Class inv: exactly one of eastB, westB is enabled */
JButton westB= new JButton("west");
JButton eastB= new JButton("east");

O O O mouse ..

public ButtonDemo1(String t) {
super(t);
Container cp= getContentPane();
cp.add(westB, BLayout. WEST); public void actionPerformed
cp.add(eastB, BLayout, EAST); (ActionEvent e) {
westB.setEnabled(false); boolean b,:. :<Fina .
castB.setEnabled(true); castB.isEnabled();

; : i) astB.setEnabled(!b);
westB.addActionListener(this); cast ! >
eastB.addActionListener(this); westB.setEnabled(b);

1
pack(); setVisible(true);

west east

s

Listening to a Button

A JPanel that is painted

o The JFrame content pane has a JPanel in its CENTER
and a “reset” button in its SOUTH.

o The JPanel has a horizontal box b, which contains
two vertical Boxes.

o Each vertical Box contains two instances of class Square.

o Click a Square that has no pink circle, and a pink circle is drawn.
Click a square that has a pink circle, and the pink circle disappears.
Click the rest button and all pink circles disappear.

This GUI has to listen to:
.(|) alsclick onasBu:tolsn e,,';s:t these are different kinds of

(2) a click on a Square (a Box) events, and they need
different listener methods

/** Instance: JPanel of size (WIDTH, HEIGHT).
Green or red: */
public class Square extends JPanel {
public static final int HEIGHT= 70;
public static final int WIDTH= 70;
private int x, y; // Panel is at (X, y)
private boolean hasDisk= false;
/** Const: square at (x, y). Red/green? Parity of x+y. */
public Square(int x, int y) { Class
this .x=x; this.y=y; Square
setPreferredSize(new Dimension(WIDTH,HEIGHT));
}
/** Complement the "has pink disk" property */
public void complementDisk() {
hasDisk= ! hasDisk;
repaint(); // Ask the system to repaint the square

} 5

continued on later

Class Graphics

An object of abstract class Graphics has methods to draw on a
component (e.g. on a JPanel, or canvas).

Major methods:
drawString(“abc”, 20, 30); drawLine(x1, y1, x2, y2);
drawRect(x, y, width, height); fillRect(x, y, width, height);
drawOval(x, y, width, height); fillOval(x, y, width, height);
setColor(Color.red); getColor()
getFont() setFont(Font f);
More methods

You won’t create an object of Graphics; you will be

given one to use when you want to paint a component

Graphics is in package java.awt
10

continuation of class Square Class

/# paint this square using g. System calls Square

paint whenever square has to be redrawn.*/

Lo . /** Remove pink disk
public void paint(Graphics g) {

(if present) */

if ((x+y)%2 == 0) g.setColor(Color.green); public void clearDisk() {
else g.setColor(Color.red); hasDisk= false;
g fillRect(0, 0, WIDTH-1, HEIGHT-1); /I Ask system to
. . // repaint square
if (hasDisk) { repaint();
g.setColor(Color.pink); 3
g.fillOval(7, 7, WIDTH-14, HEIGHT-14);

}

g.setColor(Color.black);

g.drawRect(0, 0, WIDTH-1,HEIGHT-1);

g.drawString("("+x+", "+y+")", 10, 5+HEIGHT/2);
i

Listen to mouse event
(click, press, release, enter, leave on a component)

public interface MouseListener { In package java.awt.cvent
void mouseClicked(MouseEvent e);
void mouseEntered(MouseEvent e);
void mouseExited(MouseEvent e);
void mousePressed(MouseEvent e);
void mouseReleased(MouseEvent ¢);

Having to write all of these in a class that implements
MouseListener, even though you don’t want to use all
of them, can be a pain. So, a class is provided that
implements them in painless way.

12

Listen to mouse event
(click, press, release, enter, leave on a component)

In package java.swing.event

public class MouseInputAdaptor
implements MouseListener {
public void mouseClicked(MouseEvent ¢) {}
public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent ¢) {}
public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}
. others ...

So, just write a subclass of MouselnputAdaptor and
) override only the methods appropriate for the application

13

Javax.swing.event.MouselnputAdapter
implements MouseListener

[al]

[MiA]

mouseClicked() ’a—Z‘

mouseEntered() m‘
mouseEXxited()

mousePressed() \—
mouseReleased() DemoMouseEvents

dmdat | 1abl...] tab...]

DemoMouseEvents() { ...
labl.addMouseListener(dma);

MouseEvents

mouseClicked() {

) 1

14

import javax.swing.*; A class that listens to a
import javax swing event.*; mouseclick in a Square
import java.awt.*;

import java.awt.event.*;

red: listening

blue: placing
/*#* Contains a method that responds to a
mouse click in a Square */
public class MouseEvents
extends MouselnputAdapter {

This class has several methods
(that do nothing) that process

/I Complement "has pink disk" property mouse events:
public void mouseClicked(MouseEvent e) { mouse click

Object ob= e.getSource(); mouse press

if (ob instanceof Square) { mouse release

((Square)ob).complementDisk(); mouse enters component
} mouse leaves component
mouse dragged beginning in

} component

i

Our class overrides only the method that processes mouse clicks
15

public class MD2 extends JFrame
implements ActionListener {
Box b= new Box(...X AXIS);
Box leftC= new Box(...Y_AXIS);
Square b00, b01= new squares;
Box riteC= new Box(..Y_AXIS); \
Square b10, b01= new squares; !
JButton jb= new JButton("reset"); public void actionPerformed (
ActionEvent e) {
call clearDisk() for
b00, b01, b10, b1l

jb.addActionListener(this);

b00.addMouseListener(me);
b01.addMouseListener(me);
b10.addMouseListener(me);
bll.addMouseListener(me);

MouseEvents me=
new MouseEvents();

/** Constructor: ... */ .

public MouseDemo?2() { s
super(); red: listening
place components on content pane; .
pack, make unresizeable, visible; blue: placing

Class MouseDemo2

16

Listening to the keyboard
import java.awt.*; import java.awtevent.*; import javax.swing.*;

public class AllCaps extends KeyAdapter { red: listening
JFrame capsFrame= new JFrame(); blue: placi
JLabel capsLabel= new JLabel(); ue: placing

public AllCaps() { |. Extend this class.

capsLabel.setHorizontal Alignment(SwingConstants. CENTER);
capsLabel.setText(":)");

capsFrame.setSize(200,200); 3.Add this instance as a
Container c= capsFrame.gelCW key listener for the frame
c.add(capsLabel); 2. Override this method.
capsFrame.addKeyListener(this); It is called when a key

capsFrame.show(); troke is detected.
) /

public void keyPressed (KeyEvent e) {
char typedChar= e.getKeyChar();
capsLabel.setText(("" + typedChar + "").toUpperCase()); L

¥
¥

public class BDemo3 extends JFrame implements
ActionListener {
private JButton wButt, eButt ...; Have a different

public ButtonDemo3() { fistener for cach

butt
Add buttons to content pane, enable utton
ne, disable the other
wButt.addActionListener(this);
eButt.addActionListener(new BeListener()); }
public void actionPerformed(ActionEvent e) *
boolean b= eButt.isEnabled(); Doesn’t Véork!
h)- N an’t
?“Steelll%li!t éF%%{-‘ﬂ%?fl('b)’ wButt.setEnabled(b) -

eButt, wButt

class BeListener implements ActionListener {
public void actionPerformed(ActionEvent e) {
boolean b= eButt.isEnabled();

BD3@2

BeLis@80
wButtl:| eButtE
aPerf(... eButt ... wButt ...} aPerf(... eButt ... wButt ...}
listens to wButt listens to eButt but can’t reference fields
BD3@2

Make BeListener an inner
wBuctI:| eButt l:| class.

aPerf...(... eButt ... wButt..} . .
Inside-out rule then gives

BeLis@80 access to wButt, eButt
Beli

aPerf(... eButt ... wButt ...}

19

Solution to problem: Make BeListener an inner class.
Just as you can
public class BDemo3 extends Jframe declare variables
implements ActionListener { and methods within

[private JButton wButt, eButt ...; a class, you can

[public ButtonDemo3() { ... } declare a class
- within a class

public void actionPerformed(ActionEvea. «, ...,
B private class BeListener implements ActionLisl?r {...}

Inside-out rule says that methods in here
Can reference all the ﬁellds and metlhods

‘We demo this using ButtonDemo3 ‘

20

Problem: can’t give a function as a parameter:

Lo Why not just give
public void m() { ... cButt the
eButt.addActionListener(aP); e o el
} Can’t do it in Java 7!
public void aP(ActionEvent ¢) { body } Can in some
other languages and
Java 8

public void m() { ... -
eButt.addActionListener(new C()); Java says: provide
} class C that wraps
method; give eButt
public class C implements IN { an object of class C

public void aP(ActionEvent e) { body }
i

C must implement interface IN that has abstract method aP

21

Have a class for which only one object is created?

Use an anonymous class.

Use sparingly, and only when the anonymous class has 1 or 2
methods in it, because the syntax is ugly, complex, hard to
understand.

public class BDemo3 extends JFrame implements
ActionListener {
private JButton wButt, eButt ...;

public ButtonDemo3() { ...
eButt.addActionListener(new BeListener());

i

public void actionPerformed(ActionEvente) { ... }

1 object of BeListener created. Ripe for making anonymous
punnc vola dCcuonrerormediACUonnLveIL €) { bouy j

} 22

Making class anonymous will replace new BeListener()
Expression that creates object of BeListener

eButt.addActionListenert new BeListeger ());

private class BeLj

se name of interface that

1. Write new BeListener implements

2. Write new ActionListener 3. Put in arguments of
3. Write ney ActionListener () constructor call

4. Writd ngw ActionListener () 4. Put in class body
{ declarations in class }

5. Replace new BeListener() by new-expression

23

with class named and with class anonymous:

public ButtonDemo3() { ...
eButt.addActionListener(new BeListener());

i

private class BeListener implements ActionListener {
public void actionPerformed(ActionEvent e) { body }
}

public ButtonDemo3() { ...
eButt.addActionListener(new ActionListener () {
public void actionPerformed(ActionEvent e) { body }
Ds
b
}

Java 8 allows functions as parameters

We won’t talk anymore about functions as parameters.

Perhaps next semester we’ll redo things to cover functions as
parameters.

