ADTS, GRAMMARS, PARSING, TREE TRAVERSALS

Prelim 1

\square Where: Kennedy Auditorium
\square When:

- A-Lib: 5:30-7
\square Lie-Z: 7:30-9
\square (unless we explicitly notified you otherwise)

Pointers to material

\square Parse trees: text, section 23.36
\square Definition of Java Language, sometimes useful: docs.oracle.com/javase/specs/ils/se8/html/index.html
\square Grammar for most of Java, for those who are curious: docs.oracle.com/iavase/specs/ils/se8/html/ils-18.html

- Tree traversals -preorder, inorder, postorder: text, sections 23.13 .. 23.15.

Expression trees

Can draw a tree for $2 * 3-(1+2 * 4)$

public abstract class Exp \{
/* return the value of this Exp */ public abstract int eval();
\}

Expression trees

public abstract class Exp \{
/* return the value of this Exp */ public abstract int eval();
\}

```
public class Int extends Exp {
    int v;
    public int eval() {
        return v;
    }
}
```


tree for $(2+3) *(1+4)$

Preorder traversal:

1. Visit the root
2. Visit left subtree, in preorder
3. Visit right subtree, in preorder

$$
*+23+14
$$

prefix and postfix notation proposed by Jan
Lukasiewicz in 1951

Postfix (we see it later) is often called RPN for Reverse Polish Notation

tree for $(2+3) *(1+4)$

In about 1974, Gries paid $\$ 300$ for an HP calculator, which had some memory and used postfix notation! Still works. Come up to see it.

Postorder traversal:

1. Visit left subtree, in postorder
2. Visit right subtree, in postorder
3. Visit the root
$23+14+$ *
Postfix notation

tree for $(2+3) *(1+4)$

Postfix is easy to compute. Process elements left to right.
Number? Push it on a stack

Binary operator? Remove two top stack elements, apply operator to it, push result on stack

Unary operator? Remove top stack element, apply operator to it, push result on Postfix notation stack

tree for $(2+3) *(1+4)$

Inorder traversal:

1. Visit left subtree, in inorder
2. Visit the root
3. Visit right subtree, in inorder

To help out, put parens around expressions with operators

$$
(2+3) \quad * \quad(1+4)
$$

Expression trees

public abstract class Exp \{ public abstract int eval(); public abstract String pre(); public abstract String post();

Exp left;
Exp right;
/** Return the value of this exp. */ public int eval() $\{$ return left.eval() + right.eval(); $\}$
/** Return the preorder.*/
public String pre() \{return "+ " + left.pre() + right.pre(); \}
/** Return the postorder.*/
public String post() $\{$ return left.post() + right.post() + " + "; $\}$
\}

Motivation for grammars

\square The cat ate the rat.
\square The cat ate the rat slowly.
\square The small cat ate the big rat slowly.
\square The small cat ate the big rat on the mat slowly.
\square The small cat that sat in the hat ate the big rat on the mat slowly, then got sick.

- Not all sequences of words are legal sentences

The ate cat rat the

- How many legal sentences are there?
- How many legal Java programs?
- How do we know what programs are legal?

A Grammar

Sentence \rightarrow Noun Verb Noun
Noun \rightarrow boys
Noun \rightarrow girls
Noun \rightarrow bunnies
Verb \rightarrow like
| see

- White space between words does not matter
- A very boring grammar because the set of Sentences is finite (exactly 18 sentences)

Our sample grammar has these rules:
A Sentence can be a Noun followed by a Verb followed by a Noun
A Noun can be boys or girls or bunnies
A Verb can be like or see

A Grammar

Sentence \rightarrow Noun Verb Noun Noun \rightarrow boys
Noun $\quad \rightarrow$ girls
Noun $\quad \rightarrow$ bunnies
Verb \rightarrow like
Verb \rightarrow see

Grammar: set of rules for generating sentences of a language.

Examples of Sentence:

- girls see bunnies
- bunnies like boys
- The words boys, girls, bunnies, like, see are called tokens or terminals
- The words Sentence, Noun, Verb are called nonterminals

A recursive grammar

Sentence $\rightarrow \quad$ Sentence and Sentence
Sentence \rightarrow Sentence or Sentence
Sentence \rightarrow Noun Verb Noun
Noun \rightarrow boys
Noun \rightarrow girls
Noun \rightarrow bunnies
Verb \rightarrow like
| see
This grammar is more interesting than previous one because the set of Sentences is infinite

What makes this set infinite?
Answer:
Recursive definition of Sentence

Detour

What if we want to add a period at the end of every sentence?
Sentence \rightarrow Sentence and Sentence .
Sentence \rightarrow Sentence or Sentence .
Sentence \rightarrow Noun Verb Noun .
Noun
Does this work?
No! This produces sentences like:

Sentences with periods

PunctuatedSentence \rightarrow Sentence .
Sentence \rightarrow Sentence and Sentence
Sentence \rightarrow Sentence or Sentence

Sentence \rightarrow Noun VerbNoun
Noun $\quad \rightarrow$ boys
Noun $\quad \rightarrow$ girls
Noun $\quad \rightarrow$ bunnies
Verb $\quad \rightarrow$ like
Verb $\quad \rightarrow$ see

- New rule adds a period only at end of sentence.
- Tokens are the 7 words plus the period (.)
- Grammar is ambiguous:
boys like girls
and girls like boys
or girls like bunnies

Grammars for programming languages

Grammar describes every possible legal expression You could use the grammar for Java to list every possible Java program. (lt would take forever.)

Grammar tells the Java compiler how to "parse" a Java program
docs.oracle.com/javase/specs/jls/se8/html/jls-2.html\#jls-2.3

Grammar for simple expressions (not the best)

$\mathrm{E} \rightarrow$ integer
$\mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$
Simple expressions:
\square An E can be an integer.

- An E can be '(' followed by an E followed by ' + ' followed by an E followed by ')'

Set of expressions defined by this grammar is a recursively-defined set
\square Is language finite or infinite?
\square Do recursive grammars always yield infinite languages?

Some legal expressions:

- 2
- $(3+34)$
- $((4+23)+89)$

Some illegal expressions:

- (3
- $3+4$

Tokens of this grammar:
(+) and any integer
$\mathrm{E} \rightarrow$ integer
$\mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$

Use a grammar in two ways:
\square A grammar defines a language (i.e. the set of properly structured sentences)
\square A grammar can be used to parse a sentence (thus, checking if a string is asentence is in the language)
To parse a sentence is to build a parse tree: much like diagramming a sentence

- Example: Show that

$$
((4+23)+89)
$$

is a valid expression E by building a parse tree

Ambiguity

Grammar is ambiguous if it allows two parse trees for a sentence. The grammar below, using no parentheses, is ambiguous. The two parse trees to right show this. We don't
know which + to evaluate first in the expression $1+2+3$
$\mathrm{E} \rightarrow$ integer
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$

Recursive descent parsing

Write a set of mutually recursive methods to check if a sentence is in the language (show how to generate parse tree later).

One method for each nonterminal of the grammar. The method is completely determined by the rules for that nonterminal. On the next pages, we give a high-level version of the method for nonterminal E :
$\mathrm{E} \rightarrow$ integer
$\mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$

Parsing an E

```
E}->\mathrm{ integer
E}->(\textrm{E}+\textrm{E}
```

/** Unprocessed input starts an E. Recognize that E, throwing away each piece from the input as it is recognized.
Return false if error is detected and true if no errors.
Upon return, processed tokens have been removed from input. */ public boolean parseE()
before call: already processed unprocessed
$\overline{(2+} \overline{(4+8)+9)}$
after call:
(call returns true)
already processed unprocessed
$(2+(4+8)+9)$

Specification: /** Unprocessed input starts an E. ...*/

$\mathrm{E} \rightarrow$ integer

public boolean parseE() \{

$\mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$

 if (first token is an integer) remove it from input and return true; if (first token is not '(') return false else remove it from input; if (!parseE()) return false; if (first token is not '+‘') return false else remove it from input; if (!parseE()) return false;if (first token is not ' $)^{\text {' }}$) return false else remove it from input; return true;

Illustration of parsing to check syntax

The scanner constructs tokens

An object scanner of class Scanner is in charge of the input String. It constructs the tokens from the String as necessary. e.g. from the string " $1464+634$ " build the token " 1464 ", the token "+", and the token "634".

It is ready to work with the part of the input string that has not yet been processed and has thrown away the part that is already processed, in left-to-right fashion.
already processed unprocessed
$(2+(4+8)+9)$

Change parser to generate a tree

/** ... Return a Tree for the E if no error.
$\mathrm{E} \rightarrow$ integer

Return null if there was an error*/
public Tree parseE() \{
if (first token is an integer) remove it from input and return true;
if (first token is an integer) \{
Tree $t=$ new Tree(the integer);
Remove token from input;
return t;
\}

Change parser to generate a tree

/** ... Return a Tree for the E if no error.

Return null if there was an error*/

$\mathrm{E} \rightarrow$ integer
$\mathrm{E} \rightarrow(\mathrm{E}+\mathrm{E})$ public Tree parseE() \{ if (first token is an integer) ...; if (first token is not '(') return null else remove it from input; Tree $\mathrm{t} 1=\operatorname{parse}(\mathrm{E})$; if ($\mathrm{t} 1==$ null) return null; if (first token is not ‘+‘) return null else remove it from input; Tree $\mathrm{t} 2=\operatorname{parse}(\mathrm{E})$; if ($\mathrm{t} 2==$ null) return null; if (first token is not ')') return false else remove it from input; return new Tree(t1, ‘+’, t2);

Code for a stack machine

Code for $2+(3+4)$

PUSH 2

PUSH 3

PUSH 4

4
ADD
3
ADD
ADD: remove two top values from stack, add them, and

Stack place result on stack

It's postfix notation! $2 \mathbf{3} \mathbf{4 + +}$

Code for a stack machine

Code for $2+(3+4)$

PUSH 2

PUSH 3
PUSH 4
ADD
ADD
ADD: remove two top values from stack, add them, and

7

9
Stack place result on stack

It's postfix notation! $2 \mathbf{3} 4++$

Use parser to generate code for a stack machine

Code for $2+(3+4)$
PUSH 2
PUSH 3
PUSH 4
ADD
ADD
ADD: remove two top values from stack, add them, and place result on stack
parseE can generate code as follows:

- For integer i, return string "PUSH" + i + "n"
- For (E1 + E2), return a string containing
-Code for E1
- Code for E2
-"ADD\n"

It's postfix notation! $234++$

Grammar that gives precedence to * over +

$$
\begin{aligned}
& \mathrm{E}->\mathrm{T}\{+\mathrm{T}\} \\
& \mathrm{T} \rightarrow \mathrm{~F}\{* \mathrm{~F}\} \\
& \mathrm{F} \rightarrow \text { integer } \\
& \mathrm{F} \rightarrow \text { (} \mathrm{E} \text {) }
\end{aligned}
$$

Notation: $\{$ xxx \} means
0 or more occurrences of xxx.
E: Expression
T: Term

F: Factor

Try to do + first, can't complete tree

Does recursive descent always work?

Some grammars cannot be used for recursive descent
Trivial example (causes infinite recursion):

$$
\begin{aligned}
& S \rightarrow b \\
& S \rightarrow S a
\end{aligned}
$$

For some constructs, recursive descent is hard to use
Can rewrite grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~b} \\
& \mathrm{~S} \rightarrow \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{aA}
\end{aligned}
$$

Other parsing techniques exist - take the compiler writing course

