
3/15/2016

1

ADTS, GRAMMARS, PARSING,

TREE TRAVERSALS
Lecture 13

CS2110 – Spring 2016

1

Prelim 1

2

 Where: Kennedy Auditorium

 When:

 A-Lib: 5:30-7

 Lie-Z: 7:30-9

 (unless we explicitly notified you otherwise)

Pointers to material

3

 Parse trees: text, section 23.36

 Definition of Java Language, sometimes useful:

docs.oracle.com/javase/specs/jls/se8/html/index.html

 Grammar for most of Java, for those who are curious:

docs.oracle.com/javase/specs/jls/se8/html/jls-18.html

 Tree traversals –preorder, inorder, postorder: text, sections

23.13 .. 23.15.

Expression trees

4

Can draw a tree for 2 * 3 – (1 + 2 * 4)

-

*

2 3

+

1 *

4

public abstract class Exp {

 /* return the value of this Exp */

 public abstract int eval();

}

2

Expression trees

5

public class Int extends Exp {

 int v;

 public int eval() {

 return v;

 }

}

public class Add extends Exp {

 Exp left;

 Exp right;

 public int eval() {

 return left.eval() + right.eval();

 }

}

public abstract class Exp {

 /* return the value of this Exp */

 public abstract int eval();

}

+

2 3

tree for (2 + 3) * (1 + 4) 6

Preorder traversal:

1. Visit the root

2. Visit left subtree, in preorder

3. Visit right subtree, in preorder

+ 2 3 * + 1 4

prefix and postfix notation

proposed by Jan

Lukasiewicz in 1951

Postfix (we see it later) is

often called RPN for

Reverse Polish Notation

*

+

2 3

+

1 4

http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

3/15/2016

2

tree for (2 + 3) * (1 + 4) 7

Postorder traversal:

1. Visit left subtree, in postorder

2. Visit right subtree, in postorder

3. Visit the root

 2 3 + 1 4 + *

In about 1974, Gries paid

$300 for an HP calculator,

which had some memory

and used postfix notation!

Still works. Come up to

see it.
Postfix notation

*

+

2 3

+

1 4

tree for (2 + 3) * (1 + 4) 8

*

+

2 3

+

1 4

 2 3 + 1 4 + *

Postfix is easy to compute.

Process elements left to

right.

Number? Push it on a stack

Binary operator? Remove

two top stack elements,

apply operator to it, push

result on stack

Unary operator? Remove

top stack element, apply

operator to it, push result on

stack

Postfix notation

tree for (2 + 3) * (1 + 4) 9

Inorder traversal:

1. Visit left subtree, in inorder

2. Visit the root

3. Visit right subtree, in inorder

To help out, put parens

around expressions with

operators

(2 + 3) * (1 + 4)

*

+

2 3

+

1 4

Expression trees

10

public class Add extends Exp {
 Exp left;
 Exp right;

 /** Return the value of this exp. */
 public int eval() {return left.eval() + right.eval();}

 /** Return the preorder.*/
 public String pre() {return “+ “ + left.pre() + right.pre(); }

 /** Return the postorder.*/
 public String post() {return left.post() + right.post() + “+ “; }

}

public abstract class Exp {

 public abstract int eval();

 public abstract String pre();

 public abstract String post();

}

Motivation for grammars

11

 The cat ate the rat.

 The cat ate the rat slowly.

 The small cat ate the big rat

slowly.

 The small cat ate the big rat

on the mat slowly.

 The small cat that sat in the

hat ate the big rat on the mat

slowly, then got sick.

 …

 Not all sequences of

words are legal

sentences

 The ate cat rat the

 How many legal

sentences are there?

 How many legal Java

programs?

 How do we know what

programs are legal?

http://docs.oracle.com/javase/specs/jls/se8/html/index.html

A Grammar

Sentence  Noun Verb Noun

Noun  boys

Noun  girls

Noun  bunnies

Verb  like

 | see

12

 White space between words does

not matter

 A very boring grammar because the

set of Sentences is finite (exactly 18

sentences)

Our sample grammar has these rules:
A Sentence can be a Noun followed by a Verb followed

 by a Noun
A Noun can be boys or girls or bunnies
A Verb can be like or see

3/15/2016

3

A Grammar

Sentence  Noun Verb Noun

Noun  boys

Noun  girls

Noun  bunnies

Verb  like

Verb  see

13

Grammar: set of rules for

generating sentences of a

language.

Examples of Sentence:

girls see bunnies

bunnies like boys

The words boys, girls, bunnies, like, see are

called tokens or terminals

The words Sentence, Noun, Verb are called

nonterminals

A recursive grammar

14

Sentence  Sentence and Sentence

Sentence  Sentence or Sentence

Sentence  Noun Verb Noun

Noun  boys

Noun  girls

Noun  bunnies

Verb  like

 | see

This grammar is more interesting

than previous one because the set of

Sentences is infinite

What makes this set infinite?

Answer:

Recursive definition of

Sentence

Detour

15

What if we want to add a period at the end of every sentence?

Sentence  Sentence and Sentence .

Sentence  Sentence or Sentence .

Sentence  Noun Verb Noun .

Noun  …

Does this work?

No! This produces sentences like:

girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with periods

16

PunctuatedSentence  Sentence .

Sentence  Sentence and Sentence

Sentence  Sentence or Sentence

Sentence  Noun VerbNoun

Noun  boys

Noun  girls

Noun  bunnies

Verb  like

Verb  see

 New rule adds a period only

at end of sentence.

 Tokens are the 7 words plus

the period (.)

 Grammar is ambiguous:

 boys like girls

 and girls like boys

 or girls like bunnies

Grammars for programming languages

17

Grammar describes every possible legal expression

You could use the grammar for Java to list every possible Java

program. (It would take forever.)

Grammar tells the Java compiler how to “parse” a Java program

docs.oracle.com/javase/specs/jls/se8/html/jls-2.html#jls-2.3

Grammar for simple expressions (not the best)

18

E  integer

E  (E + E)

Simple expressions:

 An E can be an integer.

 An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E

followed by ‘)’

Set of expressions defined by this

grammar is a recursively-defined set

 Is language finite or infinite?

 Do recursive grammars always

yield infinite languages?

Some legal expressions:

 2

 (3 + 34)

 ((4+23) + 89)

Some illegal expressions:

 (3

 3 + 4

Tokens of this grammar:

(+) and any integer

3/15/2016

4

Parsing

19

Use a grammar in two ways:

 A grammar defines a

language (i.e. the set of

properly structured

sentences)

 A grammar can be used to

parse a sentence (thus,

checking if a string is

asentence is in the language)

To parse a sentence is to build a

parse tree: much like

diagramming a sentence

 Example: Show that

 ((4+23) + 89)

is a valid expression E by

building a parse tree

E

(E) E +

89
(E) E +

4 23

E  integer

E  (E + E)

Ambiguity

20

Grammar is ambiguous if it

allows two parse trees for a

sentence. The grammar below,

using no parentheses, is

ambiguous. The two parse trees

to right show this. We don’t

know which + to evaluate first

in the expression 1 + 2 + 3

E

E E +

E E +

1 2

E  integer

E  E + E

3

20

E

E E

+ E E +

1 2

E  integer

E  E + E

3

Recursive descent parsing

21

Write a set of mutually recursive methods to check if a sentence

is in the language (show how to generate parse tree later).

One method for each nonterminal of the grammar. The method is

completely determined by the rules for that nonterminal. On the

next pages, we give a high-level version of the method for

nonterminal E:

 E  integer

 E  (E + E)

Parsing an E

22

/** Unprocessed input starts an E. Recognize that E, throwing

 away each piece from the input as it is recognized.

 Return false if error is detected and true if no errors.

 Upon return, processed tokens have been removed from input. */

public boolean parseE()

E  integer

E  (E + E)

(2 + (4 + 8) + 9)

before call: already processed unprocessed

(2 + (4 + 8) + 9)

after call: already processed unprocessed

(call returns true)

Specification: /** Unprocessed input starts an E. …*/

23

public boolean parseE() {

 if (first token is an integer) remove it from input and return true;

 if (first token is not ‘(‘) return false else remove it from input;

 if (!parseE()) return false;

 if (first token is not ‘+‘) return false else remove it from input;

 if (!parseE()) return false;

 if (first token is not ‘)‘) return false else remove it from input;

 return true;

}

E  integer

E  (E + E)

Illustration of parsing to check syntax

24

E  integer

E  (E + E)

 (1 + (2 + 4))

E

E E

3/15/2016

5

The scanner constructs tokens

25

An object scanner of class Scanner is in charge of the input

String. It constructs the tokens from the String as necessary.

e.g. from the string “1464+634” build the token “1464”, the

token “+”, and the token “634”.

It is ready to work with the part of the input string that has not

yet been processed and has thrown away the part that is

already processed, in left-to-right fashion.

 already processed unprocessed

(2 + (4 + 8) + 9)

Change parser to generate a tree

26

/** … Return a Tree for the E if no error.

 Return null if there was an error*/

public Tree parseE() {

 if (first token is an integer) remove it from input and return true;

 …

}

E  integer

E  (E + E)

if (first token is an integer) {

 Tree t= new Tree(the integer);

 Remove token from input;

 return t;

}

Change parser to generate a tree

27

/** … Return a Tree for the E if no error.

 Return null if there was an error*/

public Tree parseE() {

 if (first token is an integer) … ;

 if (first token is not ‘(‘) return null else remove it from input;

 Tree t1= parse(E); if (t1 == null) return null;

 if (first token is not ‘+‘) return null else remove it from input;

 Tree t2= parse(E); if (t2 == null) return null;

 if (first token is not ‘)‘) return false else remove it from input;

 return new Tree(t1, ‘+’, t2);

}

E  integer

E  (E + E)

Code for a stack machine

28

Code for 2 + (3 + 4)

PUSH 2

PUSH 3

PUSH 4

ADD

ADD

ADD: remove two top values

from stack, add them, and

place result on stack

It’s postfix notation! 2 3 4 + +

S t a c k

2

3

4

7

Code for a stack machine

29

Code for 2 + (3 + 4)

PUSH 2

PUSH 3

PUSH 4

ADD

ADD

ADD: remove two top values

from stack, add them, and

place result on stack

It’s postfix notation! 2 3 4 + +

S t a c k

2

7

9

Use parser to generate code for a stack machine

30

Code for 2 + (3 + 4)

PUSH 2

PUSH 3

PUSH 4

ADD

ADD

ADD: remove two top values

from stack, add them, and

place result on stack

parseE can generate code

as follows:

For integer i, return string

“PUSH ” + i + “\n”

For (E1 + E2), return a

string containing

Code for E1

Code for E2

“ADD\n”

It’s postfix notation! 2 3 4 + +

3/15/2016

6

Grammar that gives precedence to * over +

31

E -> T { + T }

T -> F { * F }

F -> integer

F -> (E)

2 + 3 * 4

 says do * first

T

E

Notation: { xxx } means

 0 or more occurrences of xxx.

E: Expression T: Term

F: Factor

F

T

F F

T

E

F

T

F F

2 + 3 * 4

Try to do + first, can’t complete tree

Does recursive descent always work?

32

Some grammars cannot be used for recursive descent

Trivial example (causes infinite recursion):

S  b

S  Sa

Can rewrite grammar

S  b

S  bA

A  a

A  aA

For some constructs, recur-

sive descent is hard to use

Other parsing techniques

exist – take the compiler

writing course

