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ADTS, GRAMMARS, PARSING, 

TREE TRAVERSALS 
Lecture 13 

CS2110 – Spring 2016 
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Prelim 1 
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 Where: Kennedy Auditorium 

 When: 

 A-Lib: 5:30-7 

 Lie-Z: 7:30-9 

 (unless we explicitly notified you otherwise) 

Pointers to material 
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 Parse trees: text, section 23.36 

 Definition of Java Language, sometimes useful: 

docs.oracle.com/javase/specs/jls/se8/html/index.html 

 Grammar for most of Java, for those who are curious: 

docs.oracle.com/javase/specs/jls/se8/html/jls-18.html 

 Tree traversals –preorder, inorder, postorder: text, sections 

23.13 .. 23.15. 

 

Expression trees 
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Can draw a tree for 2 * 3 – (1 + 2 * 4) 

- 

* 

2 3 

+ 

1 * 

4 

public abstract class Exp { 

     /* return the value of this Exp */ 

     public abstract int eval(); 

} 

2 

Expression trees 
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public class Int extends Exp { 

   int v; 

   public int eval() {   

      return v; 

   } 

} 

public class Add extends Exp { 

    Exp left; 

    Exp right; 

    public int eval() { 

        return left.eval() + right.eval(); 

    } 

} 

public abstract class Exp { 

     /* return the value of this Exp */ 

     public abstract int eval(); 

} 

+ 

2 3 

tree for (2 + 3) * (1 + 4) 6 

Preorder traversal: 

1. Visit the root 

2. Visit left subtree, in preorder 

3. Visit right subtree, in preorder 

+ 2 3 * + 1 4 

prefix and postfix notation 

proposed by Jan 

Lukasiewicz in 1951 

 

Postfix (we see it later) is 

often called RPN for 

Reverse Polish Notation 

* 

+ 

2 3 

+ 

1 4 

http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
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tree for (2 + 3) * (1 + 4) 7 

Postorder traversal: 

1. Visit left subtree, in postorder 

2. Visit right subtree, in postorder 

3. Visit the root 

 2 3 + 1 4 + * 

In about 1974, Gries paid 

$300 for an HP calculator, 

which had some memory 

and used postfix notation! 

Still works. Come up to 

see it. 
Postfix notation 

* 

+ 

2 3 

+ 

1 4 

tree for (2 + 3) * (1 + 4) 8 

* 

+ 

2 3 

+ 

1 4 

 2 3 + 1 4 + * 

Postfix is easy to compute. 

Process elements left to 

right. 

Number? Push it on a stack 

Binary operator? Remove 

two top stack elements, 

apply operator to it, push 

result on stack 

Unary operator? Remove 

top stack element, apply 

operator to it, push result on 

stack 

Postfix notation 

tree for (2 + 3) * (1 + 4) 9 

Inorder traversal: 

1. Visit left subtree, in inorder 

2. Visit the root 

3. Visit right subtree, in inorder 

To help out, put parens 

around expressions with 

operators 

(2 + 3) * (1 + 4) 

* 

+ 

2 3 

+ 

1 4 

Expression trees 
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public class Add extends Exp { 
    Exp left; 
    Exp right; 

    /** Return the value of this exp. */ 
    public int eval() {return left.eval() + right.eval();} 
 

    /** Return the preorder.*/ 
    public String pre() {return “+  “ + left.pre() + right.pre(); } 
 
    /** Return the postorder.*/ 
    public String post() {return left.post() + right.post() + “+  “; } 
 
} 

public abstract class Exp { 

    public abstract int eval(); 

    public abstract String pre(); 

    public abstract String post(); 

} 

Motivation for grammars 
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 The cat ate the rat. 

 The cat ate the rat slowly. 

 The small cat ate the big rat 

slowly. 

 The small cat ate the big rat 

on the mat slowly. 

 The small cat that sat in the 

hat ate the big rat on the mat 

slowly, then got sick. 

 … 

 Not all sequences of 

words are legal 

sentences 

 The ate cat rat the  

 How many legal 

sentences are there? 

 How many legal Java 

programs? 

 How do we know what 

programs are legal? 

http://docs.oracle.com/javase/specs/jls/se8/html/index.html 

A Grammar 

Sentence  Noun Verb Noun  

Noun  boys 

Noun  girls 

Noun  bunnies 

Verb  like 

   | see 
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 White space between words does 

not matter 

 A very boring grammar because the 

set of Sentences is finite (exactly 18 

sentences) 

Our sample grammar has these rules: 
A Sentence can be a Noun followed by a Verb followed 

          by a Noun  
A Noun  can be  boys  or  girls  or  bunnies 
A Verb    can be  like  or  see 
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A Grammar 

Sentence  Noun Verb Noun 

Noun  boys 

Noun  girls 

Noun  bunnies 

Verb   like 

Verb   see 
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Grammar: set of rules for 

generating sentences of a 

language. 

 

Examples of Sentence:   

girls see bunnies 

bunnies like boys 

 
The words boys, girls, bunnies, like, see are 

called tokens or terminals 

The words Sentence, Noun, Verb are called 

nonterminals 

A recursive grammar 
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Sentence  Sentence and Sentence  

Sentence   Sentence or Sentence  

Sentence   Noun  Verb  Noun 

Noun    boys 

Noun    girls 

Noun    bunnies 

Verb     like 

   |   see 

 

This grammar is more interesting 

than previous one because the set of 

Sentences is infinite 

What makes this set infinite? 

Answer:  

Recursive definition of 

Sentence 

Detour 
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What if we want to add a period at the end of every sentence? 

Sentence   Sentence  and  Sentence . 

Sentence   Sentence  or Sentence . 

Sentence   Noun Verb Noun . 

Noun    … 

Does this work? 

No!  This produces sentences like: 

girls like boys . and boys like bunnies . . 

Sentence Sentence 

Sentence 

Sentences with periods 
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PunctuatedSentence  Sentence . 

Sentence   Sentence and Sentence  

Sentence   Sentence or Sentence  

Sentence    Noun VerbNoun  

Noun    boys 

Noun    girls 

Noun    bunnies 

Verb   like 

Verb   see 

 New rule adds a period only 

at end of sentence. 

 Tokens are the 7 words plus 

the period (.) 

 Grammar is ambiguous: 

  boys like girls 

  and girls like boys 

  or girls like bunnies 

Grammars for programming languages 
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Grammar describes every possible legal expression 

You could use the grammar for Java to list every possible Java 

program.  (It would take forever.) 

 

Grammar tells the Java compiler how to “parse” a Java program 

docs.oracle.com/javase/specs/jls/se8/html/jls-2.html#jls-2.3 

Grammar for simple expressions (not the best) 
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E  integer 

E  ( E + E ) 

Simple expressions: 

 An E can be an integer. 

 An E can be ‘(’ followed by an E 

followed by ‘+’ followed by an E 

followed by ‘)’ 

 

Set of expressions defined by this 

grammar is a recursively-defined set 

 Is language finite or infinite? 

 Do recursive grammars always 

yield infinite languages? 

Some legal expressions: 

 2 

 (3 + 34) 

 ((4+23) + 89) 

 

Some illegal expressions: 

 (3  

 3 + 4 

 

Tokens of this grammar: 

(  +  )   and any integer 
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Parsing 
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Use a grammar in two ways: 

 A grammar defines a 

language (i.e. the set of 

properly structured 

sentences) 

 A grammar can be used to 

parse a sentence (thus, 

checking if a string is 

asentence is in the language) 

To parse a sentence is to build a 

parse tree: much like 

diagramming a sentence 

 Example: Show that  

     ((4+23) + 89)  

is a valid expression E by 

building a parse tree 

E 

( E ) E + 

89 
( E ) E + 

4 23 

E  integer 

E  ( E + E ) 

Ambiguity 

20 

Grammar is ambiguous if it 

allows two parse trees for a 

sentence. The grammar below, 

using no parentheses, is 

ambiguous. The two parse trees 

to right show this. We don’t 

know which + to evaluate first 

in the expression  1 + 2 + 3 

E  

E E +  

E E + 

1 2 

E  integer 

E   E + E  

3 
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E  

E E 

+  E E + 

1 2 

E  integer 

E   E + E  

3 

Recursive descent parsing 
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Write a set of mutually recursive methods to check if a sentence 

is in the language (show how to generate parse tree later). 

 

One method for each nonterminal of the grammar. The method is 

completely determined by the rules for that nonterminal. On the 

next pages, we give a high-level version of the method for 

nonterminal E: 

  E  integer 

 E  ( E + E ) 

 

 

Parsing an E  
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/** Unprocessed input starts an E. Recognize that E, throwing 

     away each piece from the input as it is recognized. 

     Return false if error is detected and true if no errors. 

     Upon return, processed tokens have been removed from input. */ 

public boolean parseE()  

E  integer 

E  ( E + E ) 

(   2   +   (   4    +    8    )    +    9   ) 

before call:   already processed    unprocessed 

(   2   +   (   4    +    8    )    +    9   ) 

after call:                                already processed    unprocessed 

(call returns true) 

Specification: /** Unprocessed input starts an E. …*/ 
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public boolean parseE() { 

 if (first token is an integer) remove it from input and return true; 

 if (first token is not  ‘(‘ ) return false else remove it from input; 

 if (!parseE()) return false; 

 if (first token is not  ‘+‘ ) return false else remove it from input; 

 if (!parseE()) return false; 

 if (first token is not  ‘)‘ ) return false else remove it from input; 

 return true; 

} 

 

E  integer 

E  ( E + E ) 

Illustration of parsing to check syntax 

24 

E  integer 

E  ( E + E ) 

 (       1    +     (    2     +     4     )     ) 

E 

E E 
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The scanner constructs tokens 
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An object scanner of class Scanner is in charge of the input 

String. It constructs the tokens from the String as necessary. 

e.g. from the string “1464+634” build the token “1464”, the 

token “+”, and the token “634”. 

It is ready to work with the part of the input string that has not 

yet been processed and has thrown away the part that is 

already processed, in left-to-right fashion. 

 

                                               already processed    unprocessed 

(   2   +   (   4    +    8    )    +    9   ) 

Change parser to generate a tree 
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/** … Return a Tree for the E if no error.  

            Return null if there was an error*/ 

public Tree parseE() { 

 if (first token is an integer) remove it from input and return true; 

  

 

 

 

 

     … 

} 

 

E  integer 

E  ( E + E ) 

if (first token is an integer) { 

   Tree t= new Tree(the integer); 

   Remove token from input; 

   return t; 

} 

Change parser to generate a tree 
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/** … Return a Tree for the E if no error.  

            Return null if there was an error*/ 

public Tree parseE() { 

 if (first token is an integer) … ; 

 if (first token is not  ‘(‘ ) return null else remove it from input; 

 Tree t1= parse(E); if (t1 == null) return null; 

 if (first token is not  ‘+‘ ) return null else remove it from input;  

 Tree t2= parse(E); if (t2 == null) return null; 

 if (first token is not  ‘)‘ ) return false else remove it from input;  

 return new  Tree(t1, ‘+’, t2); 

} 

 

E  integer 

E  ( E + E ) 

Code for a stack machine 
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Code for 2 + (3 + 4) 

PUSH 2 

PUSH 3 

PUSH 4 

ADD 

ADD 

ADD: remove two top values 

from stack, add them, and 

place result on stack 

It’s postfix notation!  2  3  4  +  + 

S t a c k 

2 

3 

4 

7 

Code for a stack machine 
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Code for 2 + (3 + 4) 

PUSH 2 

PUSH 3 

PUSH 4 

ADD 

ADD 

ADD: remove two top values 

from stack, add them, and 

place result on stack 

It’s postfix notation!  2  3  4  +  + 

S t a c k 

2 

7 

9 

Use parser to generate code for a stack machine 

30 

Code for 2 + (3 + 4) 

PUSH 2 

PUSH 3 

PUSH 4 

ADD 

ADD 

ADD: remove two top values 

from stack, add them, and 

place result on stack 

parseE can generate code 

as follows: 

 

For integer i, return string 

“PUSH ” + i + “\n” 

For (E1 + E2), return a 

string containing 

Code for E1 

Code for E2 

“ADD\n” 

 
It’s postfix notation!  2  3  4  +  + 
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Grammar that gives precedence to * over + 
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E ->  T  { + T } 

T -> F { * F }     

F -> integer 

F -> (  E  ) 

2  +     3       *      4 

   says do * first 

T 

E    

Notation: {  xxx } means 

  0 or more occurrences of xxx. 

E: Expression              T: Term 

F: Factor  

F 

T 

F F 

T 

E    

F 

T 

F F 

2   +      3       *      4 

Try to do + first, can’t complete tree 

Does recursive descent always work? 
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Some grammars cannot be used for recursive descent 

Trivial example (causes infinite recursion): 

S  b 

S  Sa 

 

Can rewrite grammar 

S  b 

S  bA 

A  a 

A  aA 

For some constructs, recur-

sive descent is hard to use 

 

Other parsing techniques 

exist – take the compiler 

writing course 


