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Time spent on A2  

Histogram: [inclusive:exclusive) 
[0:1):   0 
[1:2):  24 ***** 
[2:3):  84 ***************** 
[3:4): 123 ************************* 
[4:5): 125 ************************* 
[5:6):  80 **************** 
[6:7):  37 ******** 
[7:8):  25 ***** 
[8:9):  20 **** 
[9:10):  5 * 
[10:11):14 *** 
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Gave time: 543 
No time: 34 
Average: 4.3 
Median: 4 
 
3 people took 
more than 11 hrs 

Appears on the A2 FAQ note 
on the Piazza 



A3 and Prelim 

¨  Some time this morning, you should be able to see your 
feedback on “A3 test” (if you submitted it). We are again 
making A3 available. 

    Deadline for A3: Wednesday night. 

                  Only one late day allowed (Thursday) 

¨  Prelim: Next Tuesday. 
Remember to read about conflicts on the course website (under 
Exams) and to complete “assignment” P1Conflict on the CMS. 
So far, 23 people filled it out. 
Deadline for completing it: Wednesday night. 
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Merge two adjacent sorted segments 

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted.  */ 
public static merge(int[] b, int h, int t, int k) { 
} 

4 

4 7 7 8 9 3 4 7 8 b 

3 4 4 7 7 7 8 8 9  b 

h                t                  k 
     sorted                    sorted                      
h                     t                        k             

            merged,   sorted                      
h                                              k             



Merge two adjacent sorted segments 

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted.  */ 
public static merge(int[] b, int h, int t, int k) { 
     Copy b[h..t] into another array c; 
     Copy values from c and b[t+1..k] in ascending order into b[h..] 
} 
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4 7 7 8 9 c 

4 7 7 8 9 3 4 7 8 b 

3 4 4 7 7 7 8 8 9  b 

h                t                  k 

We leave you to write this 
method. Just move values 
from c and b[t+1..k] into b 
in the right order, from 
smallest to largest. 
Runs in time linear in size 
of b[h..k]. 

? ? ? ? ? 



Merge two adjacent sorted segments 

// Merge sorted c and b[t+1..k] into b[h..k] 
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   x c 

    x and y, sorted 

   ?    y b 
h        t              k 

 head of x     tail of x c 
0                 i                  c.length 

invariant: 

0       t-h  
pre: x, y are sorted 

post: b 
h                           k 

tail of  y            ?    b 
h                 u                  v          k 

head of x and head of y, sorted    

b[h..u-1] ≤ c[i..] 

b[h..u-1] ≤ b[v..k] 



Mergesort 

/** Sort b[h..k] */ 
public static void mergesort(int[] b, int h, int k]) { 
    if (size b[h..k] < 2)    
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
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Mergesort 

/** Sort b[h..k] */ 
public static void mergesort( 
           int[] b, int h, int k]) { 
    if (size b[h..k] < 2)    
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
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Merge: time proportional to n 
 
Depth of recursion: log n 
 
Can therefore show (later) 
that time taken is 
proportional to n log n 
 
But space is also proportional 
to n! 

Let n = size of b[h..k] 
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QuickSort versus MergeSort 
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/** Sort b[h..k] */ 
public static void QS 
         (int[] b, int h, int k) { 
    if (k – h < 1) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);  
    QS(b, j+1, k); 
} 

/** Sort b[h..k] */ 
public static void MS 
         (int[] b, int h, int k) { 
    if (k  – h < 1) return; 
    MS(b, h, (h+k)/2);  
    MS(b, (h+k)/2 + 1, k); 
    merge(b, h, (h+k)/2, k); 
} 

One processes the array then recurses. 
One recurses then processes the array.  



Readings, Homework 

¨  Textbook: Chapter 4 
¨  Homework: 

¤ Recall our discussion of linked lists and A2. 
¤ What is the worst case time for appending an item to a 

linked list?  For testing to see if the list contains X?  
What would be the best case time for these operations? 

¤  If we were going to talk about time (speed) for 
operating on a list, which makes more sense: worst-case, 
average-case, or best-case time?  Why? 
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What Makes a Good Algorithm? 
11 

Suppose you have two possible algorithms or ADT 
implementations that do the same thing; which is better? 

What do we mean by better? 
¤  Faster? 
¤  Less space? 
¤  Easier to code? 
¤  Easier to maintain? 
¤  Required for homework? 

How do we measure time and space of an algorithm? 



Basic Step: One “constant time” operation 
12 

Basic step: 
¤  Input/output of scalar value 
¤  Access value of scalar 

variable, array element, or 
object field 

¤  assign to variable, array 
element, or object field  

¤  do one arithmetic or logical 
operation 

¤  method call (not counting arg 
evaluation and execution of 
method body) 

�  If-statement: number of basic 
steps on branch that is 
executed 

� Loop: (number of basic steps 
in loop body) * (number of 
iterations) –also bookkeeping 

� Method: number of basic 
steps in method body 
(include steps needed to 
prepare stack-frame) 



Counting basic steps in worst-case execution 
13 

/** return true iff v is in b */ 
static boolean find(int[] b, int v) { 
   for (int i = 0; i < b.length; i++) { 
      if (b[i] == v) return true; 
   } 
   return false; 
} 

Linear Search worst-case execution 
basic step        # times executed 
i= 0;                 1 
i < b.length  n+1 
i++   n 
b[i] == v          n 
return true        0 
return false       1 
Total                 3n + 3  

Let n = b.length 

We sometimes simplify counting by counting only important things. 
Here, it’s the number of array element comparisons b[i] == v.  
That’s the number of loop iterations: n. 



Sample Problem: Searching 
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/** b is sorted. Return h satisfying 
      b[0..h] <= v < b[h+1..] */ 
static int bsearch(int[] b, int v) { 

  int h= -1; 
     int k= b.length; 

  while (h+1 != k) { 
           int e= (h+ k)/2; 
           if (b[e] <= v)  h= e; 
           else k= e; 
     } 
     return h; 
}   

Second solution: 
Binary Search 

inv: 
b[0..h] <= v < b[k..] 

Number of iterations 
(always the same): 
~log b.length 
Therefore, 
log b.length 
arrray comparisons 



What do we want from a  
definition of “runtime complexity”? 
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size n of problem 0  1  2  3  … 

Number of 
operations 
executed 

5 ops 

2+n ops 

n*n ops 

1. Distinguish among cases 
for large n, not small n 

2. Distinguish among 
important cases, like 
•  n*n basic operations 
•  n basic operations 
•  log n basic operations 
•  5 basic operations 

3. Don’t distinguish among 
trivially different cases. 
•  5 or 50 operations 
•  n, n+2, or 4n operations 



Definition of O(…) 
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 

c·g(n) 

f(n) 

N 

Graphical 
view 

Get out far enough 
(for n ≥ N) 

c·g(n) is bigger 
than f(n) 



What do we want from a  
definition of “runtime complexity”? 
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size n of problem 0  1  2  3  … 

Number of 
operations 
executed 

5 ops 

2+n ops 

n*n ops 

Formal definition: f(n) is 
O(g(n)) if there exist 
constants c > 0 and N ≥ 0 
such that for all n ≥ N,    
f(n) ≤ c·g(n) 

Roughly, f(n) is O(g(n)) 
means that f(n) grows 
like g(n) or slower, to 
within a constant factor 



Prove that (n2 + n) is O(n2) 

Example: Prove that (n2 + n) is O(n2) 
 
Methodology: 
 
Start with f(n) and slowly transform into c · g(n): 

¨   Use  =   and  <=  and  <  steps 
¨     At appropriate point, can choose N to help calculation 
¨     At appropriate point, can choose c to help calculation 
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Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 



Prove that (n2 + n) is O(n2) 

Example: Prove that (n2 + n) is O(n2) 
        f(n) 
=         <definition of f(n)> 
         n2 + n 
<=       <for n ≥ 1,  n ≤ n2> 
         n2 + n2 
=          <arith> 
          2*n2 

=           <choose g(n) = n2> 
                2*g(n) 
  

19 
Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 

Choose 
N = 1 and c = 2 



Prove that 100 n + log n   is   O(n) 

20 

      f(n) 
=         <put in what f(n) is> 

      100 n  +   log n 

<=        <We know log n ≤ n for n ≥ 1> 

      100 n + n 

=         <arith> 
     101 n 

=         <g(n) = n> 
       101 g(n) 

Formal definition: f(n) is O(g(n)) if there exist constants c and 
N such that for all n ≥ N,   f(n) ≤ c·g(n) 

Choose 
N = 1 and c = 101 



O(…) Examples 
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Let f(n) = 3n2 + 6n – 7 
¤ f(n) is O(n2) 
¤ f(n) is O(n3) 
¤ f(n) is O(n4) 
¤ … 

p(n) = 4 n log n + 34 n – 89 
¤ p(n) is O(n log n) 
¤ p(n) is O(n2) 

h(n) = 20·2n + 40n 
h(n) is O(2n) 

a(n) = 34 
¤ a(n) is O(1) 

Only the leading term (the 
term that grows most 
rapidly) matters 

If it’s O(n2), it’s also O(n3) 
etc!  However, we always 
use the smallest one 



Commonly Seen Time Bounds 
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O(1) constant excellent 
O(log n) logarithmic excellent 

O(n) linear good 
O(n log n) n log n pretty good 

O(n2) quadratic OK 
O(n3) cubic maybe OK 
O(2n) exponential too slow 



Problem-size examples 
23 

¨  Suppose a computer can execute 1000 operations 
per second; how large a problem can we solve? 

alg 1 second 1 minute 1 hour 

O(n) 1000 60,000 3,600,000 
O(n log n) 140 4893 200,000 

O(n2) 31 244 1897 
3n2 18 144 1096 

O(n3) 10 39 153 
O(2n) 9 15 21 



Why bother with runtime analysis? 
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Computers so fast that we 
can do whatever we want 
using simple algorithms and 
data structures, right? 
Not really – data-structure/
algorithm improvements can 
be a very big win 
Scenario: 

¤  A runs in n2 msec 
¤  A' runs in n2/10 msec 
¤  B runs in 10 n log n msec 

Problem of size n=103 

§ A: 103 sec ≈ 17 minutes 
§ A': 102 sec ≈ 1.7 minutes 
§ B: 102 sec ≈ 1.7 minutes 
Problem of size n=106 

§ A: 109 sec ≈ 30 years 
§ A': 108 sec ≈ 3 years 
§ B: 2·105 sec ≈ 2 days 

1 day = 86,400 sec ≈ 105 sec 
1,000 days ≈ 3 years 



Algorithms for the Human Genome 
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Human genome  
= 3.5 billion nucleotides  
~ 1 Gb 

@1 base-pair 
instruction/µsec 
¤  n2 → 388445 years 
¤  n log n → 30.824 hours 
¤  n → 1 hour 



Worst-Case/Expected-Case Bounds 
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May be difficult to determine 
time bounds for all imaginable 
inputs of size n 

Simplifying assumption #4: 
Determine number of steps for 
either 

¤  worst-case or 

¤  expected-case or 
 average case 

� Worst-case 
§ Determine how much time 
is needed for the worst 
possible input of size n 

� Expected-case 
§ Determine how much time 
is needed on average for 
all inputs of size n 



Simplifying Assumptions 
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Use the size of the input rather than the input itself – n 

Count the number of “basic steps” rather than computing exact 
time 

Ignore multiplicative constants and small inputs  
(order-of, big-O) 

Determine number of steps for either 
¤ worst-case 
¤ expected-case 

These assumptions allow us to analyze algorithms effectively 



Worst-Case Analysis of Searching 
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Linear Search  
// return true iff v is in b 
static bool find (int[] b, int v) { 
   for (int x : b) { 
      if (x == v) return true; 
   } 
   return false; 
} 
   

Binary Search 
// Return h that satisfies 
//      b[0..h] <= v < b[h+1..] 
static bool bsearch(int[] b, int v {  
   int h= -1;  int t= b.length; 
   while ( h != t-1 ) { 
        int  e= (h+t)/2; 
        if (b[e] <= v)  h= e; 
        else t= e; 
   } 
}   
Always ~(log #b+1) iterations. 
Worst-case and expected 

times:  O(log #b) 

worst-case time: O(#b) 
Expected time O(#b) 

#b = size of b 
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Analysis of Matrix Multiplication 
30 

Multiply n-by-n  matrices A and B: 

Convention, matrix problems measured in terms of 
n, the number of rows, columns 
§ Input size is really 2n2, not n 
§ Worst-case time: O(n3) 
§ Expected-case time:O(n3) 

for (i = 0; i < n; i++) 
   for (j = 0; j < n; j++) { 
       c[i][j] = 0; 
       for (k = 0; k < n; k++) 

 c[i][j] += a[i][k]*b[k][j]; 
   } 



Remarks 
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Once you get the hang of this, you can quickly zero in on what is 
relevant for determining asymptotic complexity 

¤  Example: you can usually ignore everything that is not in the 
innermost loop.  Why? 

One difficulty: 
¤  Determining runtime for recursive programs 
  Depends on the depth of recursion 



Limitations of Runtime Analysis 

Big-O can hide a very 
large constant 

¤  Example: selection 
¤  Example: small problems 

The specific problem you 
want to solve may not be 
the worst case 

¤  Example: Simplex method 
for linear programming 

 Your program may not 
run often enough to make 
analysis worthwhile 

¨  Example:  
one-shot vs. every day 

¨  You may be analyzing 
and improving the wrong 
part of the program 

¨ Very common situation 
¨ Should use profiling tools 
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What you need to know / be able to do 
33 

¨  Know the definition of f(n) is O(g(n)) 

¨  Be able to prove that some function f(n) is O(g(n)). 
The simplest way is as done on two slides above. 

¨  Know worst-case and average (expected) case 
O(…) of basic searching/sorting algorithms: 
linear/binary search, partition alg of quicksort, 
insertion sort, selection sort, quicksort, merge sort. 

¨  Be able to look at an algorithm and figure out its 
worst case O(…) based on counting basic steps or 
things like array-element swaps 
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Lower Bound for Comparison Sorting 

Goal: Determine minimum 
time required to sort n items 

Note: we want worst-case, 
not best-case time 
¤ Best-case doesn’t tell us 

much. E.g. Insertion Sort 
takes O(n) time on already-
sorted input 

¤ Want to know worst-case 
time for best possible 
algorithm 

� How can we prove anything 
about the best possible 
algorithm? 

§ Want to find characteristics that 
are common to all sorting 
algorithms 

§ Limit attention to comparison-
based algorithms and try to 
count number of comparisons 
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Comparison Trees 

¨  Comparison-based algorithms make 
decisions based on comparison of 
data elements 

¨  Gives a comparison tree 
¨  If algorithm fails to terminate for 

some input, comparison tree is infinite 
¨  Height of comparison tree represents 

worst-case number of comparisons for 
that algorithm 

¨  Can show: Any correct comparison-
based algorithm must make at least 
n log n comparisons in the worst case 

a[i] < a[j] 
yes no 
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Lower Bound for Comparison Sorting 

¨  Say we have a correct comparison-based algorithm 

¨  Suppose we want to sort the elements in an array b[] 

¨  Assume the elements of b[] are distinct 

¨  Any permutation of the elements is initially possible 

¨  When done, b[] is sorted 

¨  But the algorithm could not have taken the same path in 
the comparison tree on different input permutations 
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Lower Bound for Comparison Sorting 

How many input permutations are possible?  n! ~ 2n log n 

For a comparison-based sorting algorithm to be correct, it 
must have at least that many leaves in its comparison tree  

To have at least n! ~ 2n log n leaves, it must have height at 
least n log n (since it is only binary branching, the number 
of nodes at most doubles at every depth) 

Therefore its longest path must be of length at least  
n log n, and that is its worst-case running time 



Mergesort 

/** Sort b[h..k] */ 
public static mergesort( 
  int[] b, int h, int k]) { 
    if (size b[h..k] < 2) 
         return; 
    int t= (h+k)/2; 
    mergesort(b, h, t); 
    mergesort(b, t+1, k); 
    merge(b, h, t, k); 
} 
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Runtime recurrence 
T(n): time to sort array of size n    
   T(1) = 1 
   T(n) = 2T(n/2) + O(n) 

Can show by induction that  
   T(n) is O(n log n) 

Alternatively, can see that T(n) is 
O(n log n) by looking at tree of 
recursive calls 


