
SEARCHING,
SORTING, AND
ASYMPTOTIC COMPLEXITY
Lecture 11
CS2110 – Spring 2016

1

Time spent on A2

Histogram: [inclusive:exclusive)
[0:1): 0
[1:2): 24 *****
[2:3): 84 *****************
[3:4): 123 *************************
[4:5): 125 *************************
[5:6): 80 ****************
[6:7): 37 ********
[7:8): 25 *****
[8:9): 20 ****
[9:10): 5 *
[10:11):14 ***

2

Gave time: 543
No time: 34
Average: 4.3
Median: 4

3 people took
more than 11 hrs

Appears on the A2 FAQ note
on the Piazza

A3 and Prelim

¨  Some time this morning, you should be able to see your
feedback on “A3 test” (if you submitted it). We are again
making A3 available.

 Deadline for A3: Wednesday night.

 Only one late day allowed (Thursday)

¨  Prelim: Next Tuesday.
Remember to read about conflicts on the course website (under
Exams) and to complete “assignment” P1Conflict on the CMS.
So far, 23 people filled it out.
Deadline for completing it: Wednesday night.

3

Merge two adjacent sorted segments

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
}

4

4 7 7 8 9 3 4 7 8 b

3 4 4 7 7 7 8 8 9 b

h t k
 sorted sorted
h t k

 merged, sorted
h k

Merge two adjacent sorted segments

/* Sort b[h..k]. Precondition: b[h..t] and b[t+1..k] are sorted. */
public static merge(int[] b, int h, int t, int k) {
 Copy b[h..t] into another array c;
 Copy values from c and b[t+1..k] in ascending order into b[h..]
}

5

4 7 7 8 9 c

4 7 7 8 9 3 4 7 8 b

3 4 4 7 7 7 8 8 9 b

h t k

We leave you to write this
method. Just move values
from c and b[t+1..k] into b
in the right order, from
smallest to largest.
Runs in time linear in size
of b[h..k].

? ? ? ? ?

Merge two adjacent sorted segments

// Merge sorted c and b[t+1..k] into b[h..k]

6

 x c

 x and y, sorted

 ? y b
h t k

 head of x tail of x c
0 i c.length

invariant:

0 t-h
pre: x, y are sorted

post: b
h k

tail of y ? b
h u v k

head of x and head of y, sorted

b[h..u-1] ≤ c[i..]

b[h..u-1] ≤ b[v..k]

Mergesort

/** Sort b[h..k] */
public static void mergesort(int[] b, int h, int k]) {
 if (size b[h..k] < 2)
 return;
 int t= (h+k)/2;
 mergesort(b, h, t);
 mergesort(b, t+1, k);
 merge(b, h, t, k);
}

7

h t k

 merged, sorted
h k

sorted sorted

Mergesort

/** Sort b[h..k] */
public static void mergesort(
 int[] b, int h, int k]) {
 if (size b[h..k] < 2)
 return;
 int t= (h+k)/2;
 mergesort(b, h, t);
 mergesort(b, t+1, k);
 merge(b, h, t, k);
}

8

Merge: time proportional to n

Depth of recursion: log n

Can therefore show (later)
that time taken is
proportional to n log n

But space is also proportional
to n!

Let n = size of b[h..k]

9

QuickSort versus MergeSort
9

/** Sort b[h..k] */
public static void QS
 (int[] b, int h, int k) {
 if (k – h < 1) return;
 int j= partition(b, h, k);
 QS(b, h, j-1);
 QS(b, j+1, k);
}

/** Sort b[h..k] */
public static void MS
 (int[] b, int h, int k) {
 if (k – h < 1) return;
 MS(b, h, (h+k)/2);
 MS(b, (h+k)/2 + 1, k);
 merge(b, h, (h+k)/2, k);
}

One processes the array then recurses.
One recurses then processes the array.

Readings, Homework

¨  Textbook: Chapter 4
¨  Homework:

¤ Recall our discussion of linked lists and A2.
¤ What is the worst case time for appending an item to a

linked list? For testing to see if the list contains X?
What would be the best case time for these operations?

¤  If we were going to talk about time (speed) for
operating on a list, which makes more sense: worst-case,
average-case, or best-case time? Why?

10

What Makes a Good Algorithm?
11

Suppose you have two possible algorithms or ADT
implementations that do the same thing; which is better?

What do we mean by better?
¤  Faster?
¤  Less space?
¤  Easier to code?
¤  Easier to maintain?
¤  Required for homework?

How do we measure time and space of an algorithm?

Basic Step: One “constant time” operation
12

Basic step:
¤  Input/output of scalar value
¤  Access value of scalar

variable, array element, or
object field

¤  assign to variable, array
element, or object field

¤  do one arithmetic or logical
operation

¤  method call (not counting arg
evaluation and execution of
method body)

�  If-statement: number of basic
steps on branch that is
executed

� Loop: (number of basic steps
in loop body) * (number of
iterations) –also bookkeeping

� Method: number of basic
steps in method body
(include steps needed to
prepare stack-frame)

Counting basic steps in worst-case execution
13

/** return true iff v is in b */
static boolean find(int[] b, int v) {
 for (int i = 0; i < b.length; i++) {
 if (b[i] == v) return true;
 }
 return false;
}

Linear Search worst-case execution
basic step # times executed
i= 0; 1
i < b.length n+1
i++ n
b[i] == v n
return true 0
return false 1
Total 3n + 3

Let n = b.length

We sometimes simplify counting by counting only important things.
Here, it’s the number of array element comparisons b[i] == v.
That’s the number of loop iterations: n.

Sample Problem: Searching
14

/** b is sorted. Return h satisfying
 b[0..h] <= v < b[h+1..] */
static int bsearch(int[] b, int v) {

 int h= -1;
 int k= b.length;

 while (h+1 != k) {
 int e= (h+ k)/2;
 if (b[e] <= v) h= e;
 else k= e;
 }
 return h;
}

Second solution:
Binary Search

inv:
b[0..h] <= v < b[k..]

Number of iterations
(always the same):
~log b.length
Therefore,
log b.length
arrray comparisons

What do we want from a
definition of “runtime complexity”?

15

size n of problem 0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

1. Distinguish among cases
for large n, not small n

2. Distinguish among
important cases, like
•  n*n basic operations
•  n basic operations
•  log n basic operations
•  5 basic operations

3. Don’t distinguish among
trivially different cases.
•  5 or 50 operations
•  n, n+2, or 4n operations

Definition of O(…)

16

Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

c·g(n)

f(n)

N

Graphical
view

Get out far enough
(for n ≥ N)

c·g(n) is bigger
than f(n)

What do we want from a
definition of “runtime complexity”?

17

size n of problem 0 1 2 3 …

Number of
operations
executed

5 ops

2+n ops

n*n ops

Formal definition: f(n) is
O(g(n)) if there exist
constants c > 0 and N ≥ 0
such that for all n ≥ N,
f(n) ≤ c·g(n)

Roughly, f(n) is O(g(n))
means that f(n) grows
like g(n) or slower, to
within a constant factor

Prove that (n2 + n) is O(n2)

Example: Prove that (n2 + n) is O(n2)

Methodology:

Start with f(n) and slowly transform into c · g(n):

¨  Use = and <= and < steps
¨  At appropriate point, can choose N to help calculation
¨  At appropriate point, can choose c to help calculation

18
Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Prove that (n2 + n) is O(n2)

Example: Prove that (n2 + n) is O(n2)
 f(n)
= <definition of f(n)>
 n2 + n
<= <for n ≥ 1, n ≤ n2>
 n2 + n2
= <arith>
 2*n2

= <choose g(n) = n2>
 2*g(n)

19
Formal definition: f(n) is O(g(n)) if there exist constants c > 0
and N ≥ 0 such that for all n ≥ N, f(n) ≤ c·g(n)

Choose
N = 1 and c = 2

Prove that 100 n + log n is O(n)

20

 f(n)
= <put in what f(n) is>

 100 n + log n

<= <We know log n ≤ n for n ≥ 1>

 100 n + n

= <arith>
 101 n

= <g(n) = n>
 101 g(n)

Formal definition: f(n) is O(g(n)) if there exist constants c and
N such that for all n ≥ N, f(n) ≤ c·g(n)

Choose
N = 1 and c = 101

O(…) Examples
21

Let f(n) = 3n2 + 6n – 7
¤ f(n) is O(n2)
¤ f(n) is O(n3)
¤ f(n) is O(n4)
¤ …

p(n) = 4 n log n + 34 n – 89
¤ p(n) is O(n log n)
¤ p(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
¤ a(n) is O(1)

Only the leading term (the
term that grows most
rapidly) matters

If it’s O(n2), it’s also O(n3)
etc! However, we always
use the smallest one

Commonly Seen Time Bounds
22

O(1) constant excellent
O(log n) logarithmic excellent

O(n) linear good
O(n log n) n log n pretty good

O(n2) quadratic OK
O(n3) cubic maybe OK
O(2n) exponential too slow

Problem-size examples
23

¨  Suppose a computer can execute 1000 operations
per second; how large a problem can we solve?

alg 1 second 1 minute 1 hour

O(n) 1000 60,000 3,600,000
O(n log n) 140 4893 200,000

O(n2) 31 244 1897
3n2 18 144 1096

O(n3) 10 39 153
O(2n) 9 15 21

Why bother with runtime analysis?

24

Computers so fast that we
can do whatever we want
using simple algorithms and
data structures, right?
Not really – data-structure/
algorithm improvements can
be a very big win
Scenario:

¤  A runs in n2 msec
¤  A' runs in n2/10 msec
¤  B runs in 10 n log n msec

Problem of size n=103

§ A: 103 sec ≈ 17 minutes
§ A': 102 sec ≈ 1.7 minutes
§ B: 102 sec ≈ 1.7 minutes
Problem of size n=106

§ A: 109 sec ≈ 30 years
§ A': 108 sec ≈ 3 years
§ B: 2·105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

Algorithms for the Human Genome
25

Human genome
= 3.5 billion nucleotides
~ 1 Gb

@1 base-pair
instruction/µsec
¤  n2 → 388445 years
¤  n log n → 30.824 hours
¤  n → 1 hour

Worst-Case/Expected-Case Bounds
26

May be difficult to determine
time bounds for all imaginable
inputs of size n

Simplifying assumption #4:
Determine number of steps for
either

¤  worst-case or

¤  expected-case or
 average case

� Worst-case
§ Determine how much time
is needed for the worst
possible input of size n

� Expected-case
§ Determine how much time
is needed on average for
all inputs of size n

Simplifying Assumptions
27

Use the size of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact
time

Ignore multiplicative constants and small inputs
(order-of, big-O)

Determine number of steps for either
¤ worst-case
¤ expected-case

These assumptions allow us to analyze algorithms effectively

Worst-Case Analysis of Searching
28

Linear Search
// return true iff v is in b
static bool find (int[] b, int v) {
 for (int x : b) {
 if (x == v) return true;
 }
 return false;
}

Binary Search
// Return h that satisfies
// b[0..h] <= v < b[h+1..]
static bool bsearch(int[] b, int v {
 int h= -1; int t= b.length;
 while (h != t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
 }
}
Always ~(log #b+1) iterations.
Worst-case and expected

times: O(log #b)

worst-case time: O(#b)
Expected time O(#b)

#b = size of b

29

Analysis of Matrix Multiplication
30

Multiply n-by-n matrices A and B:

Convention, matrix problems measured in terms of
n, the number of rows, columns
§ Input size is really 2n2, not n
§ Worst-case time: O(n3)
§ Expected-case time:O(n3)

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++) {
 c[i][j] = 0;
 for (k = 0; k < n; k++)

 c[i][j] += a[i][k]*b[k][j];
 }

Remarks
31

Once you get the hang of this, you can quickly zero in on what is
relevant for determining asymptotic complexity

¤  Example: you can usually ignore everything that is not in the
innermost loop. Why?

One difficulty:
¤  Determining runtime for recursive programs
 Depends on the depth of recursion

Limitations of Runtime Analysis

Big-O can hide a very
large constant

¤  Example: selection
¤  Example: small problems

The specific problem you
want to solve may not be
the worst case

¤  Example: Simplex method
for linear programming

 Your program may not
run often enough to make
analysis worthwhile

¨  Example:
one-shot vs. every day

¨  You may be analyzing
and improving the wrong
part of the program

¨ Very common situation
¨ Should use profiling tools

32

What you need to know / be able to do
33

¨  Know the definition of f(n) is O(g(n))

¨  Be able to prove that some function f(n) is O(g(n)).
The simplest way is as done on two slides above.

¨  Know worst-case and average (expected) case
O(…) of basic searching/sorting algorithms:
linear/binary search, partition alg of quicksort,
insertion sort, selection sort, quicksort, merge sort.

¨  Be able to look at an algorithm and figure out its
worst case O(…) based on counting basic steps or
things like array-element swaps

34

Lower Bound for Comparison Sorting

Goal: Determine minimum
time required to sort n items

Note: we want worst-case,
not best-case time
¤ Best-case doesn’t tell us

much. E.g. Insertion Sort
takes O(n) time on already-
sorted input

¤ Want to know worst-case
time for best possible
algorithm

� How can we prove anything
about the best possible
algorithm?

§ Want to find characteristics that
are common to all sorting
algorithms

§ Limit attention to comparison-
based algorithms and try to
count number of comparisons

35

Comparison Trees

¨  Comparison-based algorithms make
decisions based on comparison of
data elements

¨  Gives a comparison tree
¨  If algorithm fails to terminate for

some input, comparison tree is infinite
¨  Height of comparison tree represents

worst-case number of comparisons for
that algorithm

¨  Can show: Any correct comparison-
based algorithm must make at least
n log n comparisons in the worst case

a[i] < a[j]
yes no

36

Lower Bound for Comparison Sorting

¨  Say we have a correct comparison-based algorithm

¨  Suppose we want to sort the elements in an array b[]

¨  Assume the elements of b[] are distinct

¨  Any permutation of the elements is initially possible

¨  When done, b[] is sorted

¨  But the algorithm could not have taken the same path in
the comparison tree on different input permutations

37

Lower Bound for Comparison Sorting

How many input permutations are possible? n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree

To have at least n! ~ 2n log n leaves, it must have height at
least n log n (since it is only binary branching, the number
of nodes at most doubles at every depth)

Therefore its longest path must be of length at least
n log n, and that is its worst-case running time

Mergesort

/** Sort b[h..k] */
public static mergesort(
 int[] b, int h, int k]) {
 if (size b[h..k] < 2)
 return;
 int t= (h+k)/2;
 mergesort(b, h, t);
 mergesort(b, t+1, k);
 merge(b, h, t, k);
}

38

Runtime recurrence
T(n): time to sort array of size n
 T(1) = 1
 T(n) = 2T(n/2) + O(n)

Can show by induction that
 T(n) is O(n log n)

Alternatively, can see that T(n) is
O(n log n) by looking at tree of
recursive calls

