
SEARCHING AND SORTING
HINT AT ASYMPTOTIC COMPLEXITY

Lecture 10
CS2110 – Spring 2016

Miscellaneous

¨  A3 due Monday night. Group early! Only 379 views of the
piazza A3 FAQ. Everyone should look at it.

¨  Pinned Piazza note on Supplemental study material. @472.
Contains material that may help you study certain topics. It also
talks about how to study.

2

Search as in problem set: b is sorted

3

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

inv: b
0 h t b.length
 <= v ? > v

while () {

}

Methodology:
1.  Draw the invariant as a

combination of pre and post
2.  Develop loop using 4 loopy

questions.

Practice doing this!

h= –1; t= b.length;

h+1 != t
if (b[h+1] <= v) h= h+1;
else t= h+1;

Search as in problem set: b is sorted

4

 ? pre: b
0 b.length

post: b
0 h b.length
 ≤ v > v

inv: b
0 h t b.length
 ≤ v ? > v

h= –1; t= b.length;
while (h+1 != t) {
 if (b[h+1] <= v) h= h+1;
 else t= h+1;
}

b[0] > v? one iteration.

b[b.length-1] ≤ 0?
b.length iterations
Worst case: time is
proportional to size of b

Since b is sorted, can cut ? segment in half. As a dictionary search

Search as in problem set: b is sorted

5

 ? pre: b
0 b.length

post: b
0 h b.length
 <= v > v

inv: b
0 h t b.length
 <= v ? > v

h= –1; t= b.length;
while (h != t–1) {

}

inv: b
0 h e t
 <= v ? ? > v

b
0 h e t
 <= v ≤ v ≤v ? > v

if (b[e] <= v) h= e; b
0 h e t
 <= v ? >v > v > v

else t= e;

int e= (h + t) / 2;
// h < e < t

Binary search: an O(log n) algorithm

6

inv: b
0 h t b.length = n
 <= v ? > v

h= –1; t= b.length;
while (h != t–1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}

Each iteration cuts the size of
the ? segment in half.

inv: b
0 h e t
 <= v ? ? > v

n = 2**k ? About k iterations

Time taken is proportional to k,
or log n.
A logarithmic algorithm
Write as O(log n)
[explain notation next lecture]

Looking at execution speed
7

Process an array of size n

size n 0 1 2 3 …

Number of
operations
executed

Constant time

n ops

n + 2 ops

2n + 2 ops
n*n ops

2n+2, n+2, n are all “order n” O(n)
Called linear in n, proportional to n

InsertionSort

8

A loop that processes
elements of an array

in increasing order
has this invariant

inv: b
0 i b.length
 processed ?

pre: b
0 b.length
 ? post: b

0 b.length
 sorted

inv:

 or: b[0..i-1] is sorted

b
0 i b.length
 sorted ?

for (int i= 0; i < b.length; i= i+1) { maintain invariant }

Each iteration, i= i+1; How to keep inv true?

9

inv: b
0 i b.length
 sorted ?

b
0 i b.length
 2 5 5 5 7 3 ? e.g.

Push b[i] down to its shortest position in b[0..i], then increase i

b
0 i b.length
 2 3 5 5 5 7 ?

Will take time proportional to the number of swaps needed

10 10

inv: b
0 i b.length
 sorted ?

b
0 i b.length
 2 5 5 5 7 3 ? e.g.

Push b[i] to its
sorted position
in b[0..i], then
increase i

b
0 i b.length
 2 3 5 5 5 7 ?

What to do in each iteration?

 2 5 5 5 3 7 ?

 2 5 5 3 5 7 ?

 2 5 3 5 5 7 ?

 2 3 5 5 5 7 ?

Loop
body

(inv true
before

and after)

InsertionSort
11

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {
 Push b[i] down to its sorted

 position in b[0..i]
}

Many people sort cards this way
Works well when input is nearly
sorted

Note English statement
in body.

Abstraction. Says what
to do, not how.

This is the best way to

present it. We expect
you to present it this

was when asked.

Later, show how to
implement that with a

loop

InsertionSort
12

// Q: b[0..i-1] is sorted
// Push b[i] down to its sorted position in b[0..i]

// R: b[0..i] is sorted

invariant P: b[0..i] is sorted
except that b[k] may be < b[k-1]

while (k > 0 && b[k] < b[k-1]) {

}

start?
stop?

progress?

k= k–1;
maintain
invariant?

Swap b[k] and b[k-1]

int k= i;

 2 5 3 5 5 7 ?
i k

example

How to write nested loops
13

while (k > 0 && b[k] < b[k-1]) {

}

k= k–1;

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {
 Push b[i] down to its sorted

 position in b[0..i]
}

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {
 //Push b[i] down to its sorted

 //position in b[0..i]
 int k= i;
 while (k > 0 && b[k] < b[k-1]) {
 swap b[k] and b[k-1];
 k= k-1;
 }
}

Present algorithm like this

If you are going to show
implementation, put in the
“WHAT TT DO” as a comment

InsertionSort
14

� Worst-case: O(n2)
 (reverse-sorted input)

� Best-case: O(n)
 (sorted input)

� Expected case: O(n2)

// sort b[], an array of int
// inv: b[0..i-1] is sorted
for (int i= 0; i < b.length; i= i+1) {
 Push b[i] down to its sorted position

 in b[0..i]
}

Pushing b[i] down can take i swaps.
Worst case takes
 1 + 2 + 3 + … n-1 = (n-1)*n/2
Swaps. Let n = b.length

O(f(n)) : Takes time
proportional to f(n).
Formal definition later

SelectionSort

15

pre: b
0 b.length
 ? post: b

0 b.length
 sorted

inv: b
0 i b.length
 sorted , <= b[i..] >= b[0..i-1] Additional term

in invariant

Keep invariant true while making progress?

e.g.: b
0 i b.length
 1 2 3 4 5 6 9 9 9 7 8 6 9

Increasing i by 1 keeps inv true only if b[i] is min of b[i..]

SelectionSort

16

Another common way for
people to sort cards

Runtime
§ Worst-case O(n2)
§ Best-case O(n2)
§ Expected-case O(n2)

//sort b[], an array of int
// inv: b[0..i-1] sorted AND
// b[0..i-1] <= b[i..]
for (int i= 0; i < b.length; i= i+1) {
 int m= index of minimum of b[i..];
 Swap b[i] and b[m];
}

sorted, smaller values larger values b
0 i length

Each iteration, swap min value of this section into b[i]

Swapping b[i] and b[m]

// Swap b[i] and b[m]
int t= b[i];
b[i]= b[m];
b[m]= t;

17

Partition algorithm of quicksort
18

Swap array values around until b[h..k] looks like this:

x ?
h h+1 k

 <= x x >= x
h j k

pre:

post:

x is called
the pivot

20 31 24 19 45 56 4 20 5 72 14 99
19

pivot partition
j

 19 4 5 14 20 31 24 45 56 20 72 99

Not yet
sorted

Not yet
sorted

these can be
in any order

these can be
in any order The 20 could

be in the other
partition

Partition algorithm
20

x ?
h h+1 k

 <= x x >= x
h j k

b

b

 <= x x ? >= x
h j t k

b

pre:

post:

Combine pre and post to get an invariant

invariant
needs at

least 4
sections

Partition algorithm
21

 <= x x ? >= x
h j t k

b

j= h; t= k;
while (j < t) {
 if (b[j+1] <= b[j]) {
 Swap b[j+1] and b[j]; j= j+1;
 } else {
 Swap b[j+1] and b[t]; t= t-1;
 }
}

Terminate when j = t,
so the “?” segment is
empty, so diagram
looks like result
diagram

Initially, with j = h
and t = k, this
diagram looks like
the start diagram

Takes linear time: O(k+1-h)

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;

Function does the
partition algorithm and
returns position j of pivot

int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]

}

QuickSort procedure
22

Base case

//Sort b[h..j-1] and b[j+1..k]

QS(b, h, j-1);
QS(b, j+1, k);

QuickSort
23

Quicksort developed by Sir Tony Hoare (he was
knighted by the Queen of England for his
contributions to education and CS).
81 years old.
Developed Quicksort in 1958. But he could not
explain it to his colleague, so he gave up on it.
Later, he saw a draft of the new language Algol 58 (which became
Algol 60). It had recursive procedures. First time in a procedural
programming language. “Ah!,” he said. “I know how to write it
better now.” 15 minutes later, his colleague also understood it.

Worst case quicksort: pivot always smallest value
24

x0 >= x0
j

x0 x1 >= x1
 j

x0 x1 x2 >= x2
 j

partioning at depth 0

partioning at depth 1

partioning at depth 2

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 QS(b, h, j-1); QS(b, j+1, k);

Best case quicksort: pivot always middle value
25

 <= x0 x0 >= x0
0 j n

depth 0. 1 segment of
size ~n to partition.

<=x1 x1 >= x1 x0 <=x2 x2 >=x2 Depth 2. 2 segments of
size ~n/2 to partition.

Depth 3. 4 segments of
size ~n/4 to partition.

Max depth: about log n. Time to partition on each level: ~n
Total time: O(n log n).

Average time for Quicksort: n log n. Difficult calculation

QuickSort procedure
26

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 if (b[h..k] has < 2 elements) return;
 int j= partition(b, h, k);
 // We know b[h..j–1] <= b[j] <= b[j+1..k]
 // Sort b[h..j-1] and b[j+1..k]
 QS(b, h, j-1);
 QS(b, j+1, k);
}

Worst-case: quadratic
Average-case: O(n log n)

Worst-case space: O(n*n)! --depth of
 recursion can be n

 Can rewrite it to have space O(log n)
Average-case: O(n * log n)

Partition algorithm
27

Key issue:
How to choose a pivot?

Choosing pivot
§ Ideal pivot: the median, since

it splits array in half
But computing median of
unsorted array is O(n), quite
complicated
Popular heuristics: Use
w  first array value (not good)
w  middle array value
w  median of first, middle, last,

 values GOOD!
w Choose a random element

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively

28

Quicksort with logarithmic space

Problem is that if the pivot value is always the smallest (or always
the largest), the depth of recursion is the size of the array to sort.

Eliminate this problem by doing some of it iteratively and some
recursively. We may show you this later. Not today!

29

QuickSort with logarithmic space
30

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 Reduce the size of b[h1..k1], keeping inv true
 }
}

QuickSort with logarithmic space
31

/** Sort b[h..k]. */
public static void QS(int[] b, int h, int k) {
 int h1= h; int k1= k;
 // invariant b[h..k] is sorted if b[h1..k1] is sorted
 while (b[h1..k1] has more than 1 element) {
 int j= partition(b, h1, k1);
 // b[h1..j-1] <= b[j] <= b[j+1..k1]
 if (b[h1..j-1] smaller than b[j+1..k1])
 { QS(b, h, j-1); h1= j+1; }
 else
 {QS(b, j+1, k1); k1= j-1; }
 }
}

Only the smaller
segment is sorted

recursively. If b[h1..k1]
has size n, the smaller

segment has size < n/2.
 Therefore, depth of
recursion is at most log n

32

Binary search: find position h of v = 5

1 4 4 5 6 6 8 8 10 11 12

pre: array is sorted

post: <= v > v h

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

1 4 4 5 6 6 8 8 10 11 12

h = -1 t = 11

h = -1 t = 5

h = 2 t = 5

h = 3 t = 5

h = 3 t = 4

1 4 4 5 6 6 8 8 10 11 12

Loop invariant:

b[0..h] <= v

b[t..] > v

B is sorted

5

