
SEARCHING AND SORTING 
HINT AT ASYMPTOTIC COMPLEXITY 

Lecture 10 
CS2110 – Spring 2016 



Miscellaneous 

¨  A3 due Monday night. Group early! Only 379 views of the 
piazza A3 FAQ. Everyone should look at it. 

¨  Pinned Piazza note on Supplemental study material. @472. 
Contains material that may help you study certain topics. It also 
talks about how to study. 
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Search as in problem set: b is sorted 
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         ?                                 pre: b 
0                       b.length 

post: b 
0       h               b.length 
  <= v      > v                                 

inv: b 
0        h                t             b.length 
  <= v          ?         > v                                 

while  (               ) { 
 
 
} 

Methodology: 
1.  Draw the invariant as a 

combination of pre and post 
2.  Develop loop using 4 loopy 

questions. 

Practice doing this! 

h= –1;  t= b.length; 

h+1 != t 
if (b[h+1] <= v)  h=  h+1; 
else  t= h+1; 



Search as in problem set: b is sorted 

4 

         ?                                 pre: b 
0                       b.length 

post: b 
0       h               b.length 
   ≤ v      > v                                 

inv: b 
0        h                t             b.length 
   ≤ v          ?         > v                                 

h= –1;  t= b.length; 
while  (h+1 != t ) { 
     if (b[h+1] <= v) h= h+1; 
    else  t= h+1; 
} 

b[0] > v?      one iteration. 

b[b.length-1] ≤ 0? 
b.length iterations 
Worst case: time is 
proportional to size of b 

Since b is sorted, can cut  ?  segment in half. As a dictionary search 



Search as in problem set: b is sorted 
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         ?                                 pre: b 
0                       b.length 

post: b 
0       h               b.length 
  <= v      > v                                 

inv: b 
0        h                t             b.length 
  <= v          ?         > v                                 

h= –1;  t= b.length; 
while  (h != t–1) { 
 
 
       
 
} 

inv: b 
0        h             e              t 
  <= v        ?            ?           > v                                 

b 
0        h             e              t 
  <= v       ≤ v   ≤v   ?          > v                                 

if (b[e] <= v)  h= e; b 
0        h             e              t 
  <= v       ?     >v   > v        > v                                 

else t= e; 

int e= (h + t) / 2; 
// h < e < t 



Binary search: an O(log n) algorithm 
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inv: b 
0        h                t             b.length = n 
  <= v          ?         > v                                 

h= –1;  t= b.length; 
while  (h != t–1) { 
     int  e=  (h+t)/2; 
     if (b[e] <= v)  h=  e; 
     else  t=  e; 
} 

Each iteration cuts the size of 
the ? segment in half. 

inv: b 
0        h             e              t 
  <= v        ?            ?           > v                                 

n  = 2**k ?   About k iterations 
 
Time taken is proportional to k, 
or log n. 
A logarithmic algorithm  
Write as O(log n) 
[explain notation next lecture] 



Looking at execution speed 
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Process an array of size n 

size n 0  1  2  3  … 

Number of 
operations 
executed 

Constant time 

n ops 

n + 2 ops 

2n + 2 ops 
n*n ops 

2n+2, n+2, n are all “order n” O(n) 
Called linear in n, proportional to n 



InsertionSort 

8 

A loop that processes 
elements of an array 

in increasing order 
has this invariant 

inv: b 
0                  i             b.length 
 processed        ?                                         

pre: b 
0               b.length 
       ?     post: b 

0                     b.length 
     sorted                                 

inv: 

 or:       b[0..i-1] is sorted 

b 
0                i              b.length 
   sorted           ?                                         

for (int i= 0; i < b.length; i= i+1) { maintain invariant } 
 



Each iteration, i= i+1; How to keep inv true? 

9 

inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] down to its shortest position in b[0..i], then increase i 

b 
0                             i                               b.length 
 2   3   5   5   5    7     ?                                         

Will take time proportional to the number of swaps needed 
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inv: b 
0                         i                                   b.length 
        sorted                     ?                                         

b 
0                         i                                   b.length 
 2   5   5   5   7    3     ?                                         e.g. 

Push b[i] to its 
sorted position 
in b[0..i], then 
increase i 

b 
0                              i                              b.length 
 2   3   5   5   5   7              ?                                         

What to do in each iteration? 

 2   5   5   5   3    7     ?                                         

 2   5   5   3   5    7     ?                                         

 2   5   3   5   5    7     ?                                         

 2   3   5   5   5    7     ?                                         

Loop 
body 

(inv true 
before 

and after) 



InsertionSort 
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// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted 

  position in b[0..i] 
} 

Many people sort cards this way 
Works well when input is nearly 
sorted 

Note English statement 
in body. 

Abstraction. Says what 
to do, not how. 

 
This is the best way to 

present it. We expect 
you to present it this 

was when asked. 
 

Later, show how to 
implement that with a 

loop 



InsertionSort 
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// Q: b[0..i-1] is sorted 
// Push b[i] down to its sorted position in b[0..i] 
 
 
 
 
 
// R: b[0..i] is sorted  
 
invariant P:  b[0..i] is sorted 
except that b[k] may be < b[k-1] 

while (k > 0  &&  b[k] < b[k-1]) { 
 
 
} 

start? 
stop? 

progress? 

k= k–1; 
maintain 
invariant? 

Swap b[k] and b[k-1] 

int k= i; 

 2   5   3   5   5    7     ?                                         
i k 

example 



How to write nested loops 
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while (k > 0  &&  b[k] < b[k-1]) { 
 
}  

k= k–1; 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted 

      position in b[0..i] 
} 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    //Push b[i] down to its sorted 

  //position in b[0..i] 
    int k= i; 
    while (k > 0  &&  b[k] < b[k-1]) { 
          swap b[k] and b[k-1]; 
          k= k-1; 
     } 
} 

Present algorithm like this 

If you are going to show 
implementation, put in the 
“WHAT TT DO” as a comment 



InsertionSort 
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� Worst-case: O(n2) 
   (reverse-sorted input) 

� Best-case: O(n) 
  (sorted input) 

� Expected case: O(n2) 

// sort b[], an array of int 
// inv: b[0..i-1] is sorted 
for (int i= 0; i < b.length; i= i+1) { 
    Push b[i] down to its sorted position 

  in b[0..i] 
} 

Pushing b[i] down can take i swaps. 
Worst case takes  
     1  + 2  +  3  +  …  n-1   =   (n-1)*n/2 
Swaps. Let n = b.length 

O(f(n)) : Takes time 
proportional to f(n). 
Formal definition later 



SelectionSort 
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pre: b 
0                 b.length 
       ?                                 post: b 

0                 b.length 
  sorted                                 

inv: b 
0                              i                       b.length 
  sorted                                                              , <= b[i..]      >= b[0..i-1] Additional term 

in invariant 

Keep invariant true while making progress? 

e.g.: b 
0                              i                              b.length 
 1   2   3   4   5   6    9  9  9  7  8  6  9  

Increasing i by 1 keeps inv true only if b[i] is min of b[i..] 



SelectionSort 
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Another common way for 
people to sort cards 

Runtime 
§ Worst-case O(n2) 
§ Best-case O(n2) 
§ Expected-case O(n2) 

//sort b[], an array of int 
// inv: b[0..i-1] sorted  AND 
//         b[0..i-1]  <=  b[i..] 
for (int i= 0; i < b.length; i= i+1) { 
   int m= index of minimum of b[i..]; 
   Swap b[i] and b[m]; 
} 

sorted, smaller values         larger values b 
0                                    i                                 length 

Each iteration, swap min value of this section into b[i] 



Swapping b[i] and b[m] 

// Swap b[i] and b[m] 
int t= b[i]; 
b[i]= b[m]; 
b[m]= t; 
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Partition algorithm of quicksort 
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Swap array values around until b[h..k] looks like this: 
 
 
 
 

x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

pre: 

post: 

x is called 
the pivot 



20   31   24  19  45   56    4    20    5    72  14   99 
19 

pivot partition 
j 

 19   4     5   14    20   31  24   45   56   20   72  99      

Not yet 
sorted 

Not yet 
sorted 

these can be 
in any order 

these can be 
in any order The 20 could 

be in the other 
partition 



Partition algorithm 
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x                          ?                      
h   h+1                                                 k             

        <= x                x           >= x                                                
h                              j                           k             

b 

b 

   <= x            x      ?            >= x          
h                     j                t                   k             

b 

pre: 

post: 

Combine pre and post to get an invariant 

invariant 
needs at 

least 4 
sections 



Partition algorithm 
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   <= x            x      ?            >= x          
h                     j                t                   k             

b 

j= h; t= k; 
while (j < t) { 
    if (b[j+1] <= b[j]) { 
         Swap b[j+1] and b[j];   j= j+1; 
    } else { 
         Swap b[j+1] and b[t];   t= t-1; 
    } 
} 

Terminate when j = t, 
so the “?” segment is 
empty, so diagram 
looks like result 
diagram 

Initially, with j = h 
and t = k, this 
diagram looks like 
the start diagram 

Takes linear time: O(k+1-h) 



/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    

Function does the 
partition algorithm and 
returns position j of pivot 

int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
 
 
 
} 

QuickSort procedure
22 

Base case 

//Sort b[h..j-1] and b[j+1..k] 

QS(b, h, j-1);  
QS(b, j+1, k); 



QuickSort 
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Quicksort developed by Sir Tony Hoare (he was 
knighted by the Queen of England for his 
contributions to education and CS). 
81 years old. 
Developed Quicksort in 1958. But he could not 
explain it to his colleague, so he gave up on it. 
Later, he saw a draft of the new language Algol 58 (which became 
Algol 60). It had recursive procedures. First time in a procedural 
programming language. “Ah!,” he said. “I know how to write it 
better now.” 15 minutes later, his colleague also understood it. 



Worst case quicksort: pivot always smallest value 
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x0                        >= x0 
j              

x0   x1                  >= x1 
        j              

x0   x1   x2           >= x2 
               j              

partioning at depth 0 

partioning at depth 1 

partioning at depth 2 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    QS(b, h, j-1);     QS(b, j+1, k); 



Best case quicksort: pivot always middle value 
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      <= x0            x0            >= x0 
0                          j                                 n 

depth 0. 1 segment of 
size ~n to partition. 

<=x1  x1  >= x1 x0  <=x2  x2  >=x2 Depth 2. 2 segments of 
size ~n/2 to partition. 

                                    
Depth 3.  4 segments of 
size ~n/4 to partition. 

Max depth: about log n.   Time to partition on each level: ~n 
Total time: O(n log n). 

Average time for Quicksort: n log n. Difficult calculation 



QuickSort procedure 
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/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    if (b[h..k] has < 2 elements) return; 
    int j=  partition(b, h, k); 
    // We know b[h..j–1] <= b[j] <= b[j+1..k] 
    // Sort b[h..j-1] and b[j+1..k] 
   QS(b, h, j-1);  
   QS(b, j+1, k); 
} 

Worst-case: quadratic 
Average-case: O(n log n) 

Worst-case space: O(n*n)!  --depth of 
                                           recursion can be n 

   Can rewrite it to have space O(log n) 
Average-case:  O(n * log n) 



Partition algorithm 
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Key issue: 
How to choose a pivot? 

Choosing pivot 
§ Ideal pivot: the median, since 

it splits array in half 
But computing median of 
unsorted array is O(n), quite 
complicated 
Popular heuristics: Use 
w  first array value (not good) 
w  middle array value 
w  median of first, middle, last, 

 values GOOD! 
w Choose a random element 



Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively 
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Quicksort with logarithmic space 

Problem is that if the pivot value is always the smallest (or always 
the largest), the depth of recursion is the size of the array to sort. 

 

Eliminate this problem by doing some of it iteratively and some 
recursively. We may show you this later. Not today! 
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QuickSort with logarithmic space
30 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          Reduce the size of b[h1..k1], keeping inv true 
    } 
} 



QuickSort with logarithmic space
31 

/** Sort b[h..k]. */ 
public static void QS(int[] b, int h, int k) { 
    int h1= h; int k1= k; 
    // invariant b[h..k] is sorted if b[h1..k1] is sorted 
    while (b[h1..k1] has more than 1 element) { 
          int j= partition(b, h1, k1); 
          // b[h1..j-1] <= b[j] <= b[j+1..k1] 
          if (b[h1..j-1] smaller than b[j+1..k1])  
                {  QS(b, h, j-1);  h1=  j+1; } 
         else   
                {QS(b, j+1, k1);  k1=  j-1; } 
    } 
} 

Only the smaller 
segment is sorted 

recursively. If b[h1..k1] 
has size n, the smaller 

segment has size < n/2. 
         Therefore, depth of 
recursion is at most log n 



32 

Binary search: find position h of v = 5 

1 4 4 5 6 6 8 8 10 11 12 

pre: array is sorted 

post: <= v > v h 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

1 4 4 5 6 6 8 8 10 11 12 

h = -1 t = 11 

h = -1 t = 5 

h = 2 t = 5 

h = 3 t = 5 

h = 3 t = 4 

1 4 4 5 6 6 8 8 10 11 12 

Loop invariant: 
 
b[0..h] <= v 
 
b[t..] > v 
 
B is sorted 
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