
RECURSION (CONTINUED)
Lecture 9

CS2110 – Spring 2016

Overview references to sections in text
2

¨  Note: We’ve covered everything in JavaSummary.pptx!
¨  What is recursion? 7.1-7.39 slide 1-7

¨  Base case 7.1-7.10 slide 13

¨  How Java stack frames work 7.8-7.10 slide 28-32

Solutions to exception-handling problem set are
on lecture-notes page of course website.
Look at row for recitation 3

Today, we continue discussing recursion

About prelim 1
3

1. 5:30-7PM. Kennedy 116: last name begins with A..Lib.
2. 7:30-9:PM. Kennedy 116: last name begins with Lie..Z.

3. Gates 405 if authorized to have quiet room or more time.
Complete P1Conflict on the CMS. Issue with this, see point 5.

4. Conflict with scheduled time but can make other one: Complete
P1Conflict. Go to other prelim.
5. All other conflicts (e.g. won't be in town). Email Megan Gatch
mlg34@cornell.edu. State name, netid, conflict clearly and
thoroughly. Don’t complete P1Conflict. We’ll get back to you.

Complete P1Conflict (if you have to) by end of 9 March.

Hoare triple for if-statement
4

What do we need to know this is true? {Q} if (B) S {R}

Many of you wrote this:

If {Q && B} S {R}

then {Q} if (B) S {R}

But what if B is false? Doesn’t
R still have to be true after
execution of the if-statement?

and Q && !B => R

Summary of method call execution:
5

¨  1. Push frame for call onto call stack.

¨  2. Assign arg values to pars.

¨  3. Execute method body.

¨  4. Pop frame from stack and (for a
function) push return value on the stack.

¨  For function call: When control given
back to call, pop return value, use it as
the value of the function call.

public int m(int p) {
 int k= p+1;
 return p;
}

m(5+2)
call stack

p ____

k ____

7

8

Summary of method call execution:
6

¨  1. Push frame for call onto call stack.

¨  2. Assign arg values to pars.

¨  3. Execute method body.

¨  4. Pop frame from stack and (for a
function) push return value on the stack.

¨  For function call: When control given
back to call, pop return value, use it as
the value of the function call.

public int m(int p) {
 int k= p+1;
 return k;
}

m(5+2)
call stack

p ____

k ____

7

8

8

Summary of method call execution:
7

¨  1. Push frame for call onto call stack.

¨  2. Assign arg values to pars.

¨  3. Execute method body.

¨  4. Pop frame from stack and (for a
function) push return value on the stack.

¨  For function call: When control given
back to call, pop return value, use it as
the value of the function call.

public int m(int p) {
 int k= p+1;
 return k;
}

m(5+2)
call stack

8

Understanding recursive methods
8

1.  Have a precise specification

2.  Check that the method works in the base case(s).

3. Look at the recursive case(s). In your mind, replace each

recursive call by what it does according to the spec and

verify correctness.

4. (No infinite recursion) Make sure that the args of

recursive calls are in some sense smaller than the pars of the method

The Fibonacci Function
9

Mathematical definition:
 fib(0) = 0
 fib(1) = 1
 fib(n) = fib(n - 1) + fib(n - 2), n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,
…

/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

two base cases!

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863

Example: Count the e’s in a string
10

¨  countEm(‘e’, “it is easy to see that this has many e’s”) = 4
¨  countEm(‘e’, “Mississippi”) = 0

 /** = number of times c occurs in s */
 public static int countEm(char c, String s) {
 if (s.length() == 0) return 0;

 // { s has at least 1 character }
 if (s.charAt(0) != c)
 return countEm(c, s.substring(1));

 // { first character of s is c}
 return 1 + countEm (c, s.substring(1));
}

substring s[1..],
i.e. s[1], …,
s(s.length()-1)

Computing bn for n >= 0
11

Power computation:
¤  b0 = 1
¤  If n != 0, bn = b * bn-1
¤  If n != 0 and even, bn = (b*b)n/2

Judicious use of the third property gives far better algorithm

Example: 38 = (3*3) * (3*3) * (3*3) * (3*3) = (3*3) 4

Computing bn for n >= 0
12

Power computation:
¤  a0 = 1
¤  If n != 0, bn = b bn-1
¤  If n != 0 and even, bn = (b*b)n/2

/** = b**n. Precondition: n >= 0 */
static int power(double a, double n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(b*b, n/2);
 return b * power(b, n-1);
}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls

Computing bn for n >= 0
13

/** = b**n. Precondition: n >= 0 */
static int power(double a, double n) {
 if (n == 0) return 1;
 if (n%2 == 0) return power(b*a, b/2);
 return b * power(b, n-1);
}

Suppose n = 16
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0

16 = 2**4
Suppose n = 2**k
Will make k + 2 calls

If n = 2**k
k is called the logarithm (to base 2)
of n: k = log n or k = log(n)

Tiling Elaine’s kitchen
14

Kitchen in Gries’s house: 8 x 8. Fridge sits on one of 1x1 squares
His wife, Elaine, wants kitchen tiled with el-shaped tiles –every
square except where the refrigerator sits should be tiled.

8

8 /** tile a 23 by 23 kitchen with 1
 square filled. */
public static void tile(int n)

We abstract away keeping track
of where the filled square is, etc.

Tiling Elaine’s kitchen
15

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

We generalize to a 2n by 2n kitchen

Base case?

if (n == 0) return;

Tiling Elaine’s kitchen
16

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

n > 0. What can we do to get kitchens of size 2n-1 by 2n-1

if (n == 0) return; 2n

2n

Tiling Elaine’s kitchen
17

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

We can tile the upper-right 2n-1 by 2n-1 kitchen recursively.
But we can’t tile the other three because they don’t have a filled
square.
What can we do? Remember, the idea is to tile the kitchen!

if (n == 0) return;

Tiling Elaine’s kitchen
18

/** tile a 2n by 2n kitchen with 1
 square filled. */
public static void tile(int n) {

}

if (n == 0) return;
Place one tile so that each kitchen
has one square filled;

 Tile upper left kitchen recursively;
Tile upper right kitchen recursively;
Tile lower left kitchen recursively;
Tile lower right kitchen recursively;

S triangle of depth 2: 3 S
triangles of depth 1 drawn at
the 3 vertices of the triangle

Sierpinski triangles
19

S triangle of depth 0

S triangle of depth 1: 3 S triangles of
depth 0 drawn at the 3 vertices of the
triangle

S triangle of depth d at
points p1, p2, p3:

3 S triangles of depth d-1
drawn at at p1, p2, p3

Sierpinski triangles
20

S triangle of depth 0: the triangle

p1 p2

p3

Sierpinski
triangles of
depth d-1

Conclusion
21

Recursion is a convenient and powerful way to define
functions

Problems that seem insurmountable can often be solved in a
“divide-and-conquer” fashion:

¤  Reduce a big problem to smaller problems of the same
kind, solve the smaller problems

¤  Recombine the solutions to smaller problems to form
solution for big problem

