
RECURSION
Lecture 8

CS2110 – Fall 2016

Overview references to sections in text
2

¨  Note: We’ve covered everything in JavaSummary.pptx!
¨  What is recursion? 7.1-7.39 slide 1-7

¨  Base case 7.1-7.10 slide 13

¨  How Java stack frames work 7.8-7.10 slide 28-32

Next week’s recitation
3

Study material on loop invariants here:
www.cs.cornell.edu/courses/CS2110/2016sp/online/
index.html

Link: on links and on lecture notes pages of course website.

Do that BEFORE the MANDATORY recitation.

Then, do some problem solving as in this week’s recitation

More work for us, not less
Doing this for first time in 2110. We will make mistakes.
Appreciate your tolerance and patience as we try
something that studies show works better than
conventional lectures

Why flip the class this way?
4

Usual way. 50-minute lecture, then study on your own. One
hour? Total of, say, 2 hours.

Disadvantages:

¨  Hard to listen attentively for 50 minutes. Many people
tune out, look at internet, videos, whatever

¨  Much time wasted here and there
¨  You don’t always know just how to study. No problem sets,

and if there are, no easy way to check answers.

¨  Study may consist of reading, not doing. Doesn’t help.

Why flip the class this way?
5

Flipped way. Watch short, usually 3-5 minute, videos on a topic.
Then come to recitation and participate in solving problems.

Disadvantage: If you don’t study the videos carefully, you are
wasting your time.

Advantages

¨  Break up watching videos into shorter time periods.
¨  Watch parts of one several times.

¨  In recitation, you get to DO something, not just read, and you
get to discuss with a partner and neighbors, ask TA
questions, etc.

== versus equals
6

Use p1 == p2 or p1 != p2
to determine whether p1 and p2
point to the same object (or are both
null).

Do NOT use p1.equals(p2) for this
purpose, because it doesn’t always tell
whether they point to the same object!
It depends on how equals is defined.

p1 a0

a0
 C�

equals(Object)

p2 a0

p3 a1

p4 null

p2 == p1 true
p3 == p1 false
p4 == p1 false

a1
 C�

equals(Object)

p4.equals(p1)
Null pointer exception!

Sum the digits in a non-negative integer

7

E.g. sum(7) = 7

 /** = sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return sum(n/10) + n%10 ;
 }

sum calls itself!

E.g. sum(8703) = sum(870) + 3;

Two issues with recursion

8

1. Why does it work? How does execution work?

 /** return sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return sum(n/10) + n%10 + ;
 }

sum calls itself!

2. How do we understand a given recursive method or how
do we write/develop a recursive method?

Stacks and Queues

9

top element
2nd element

...
bottom
element

stack grows Stack: list with (at least) two basic ops:
 * Push an element onto its top
 * Pop (remove) top element

Last-In-First-Out (LIFO)

Like a stack of trays in a cafeteria

first second … last Queue: list with (at least) two basic ops:
 * Append an element
 * Remove first element
First-In-First-Out (FIFO)

Americans wait in a
line. The Brits wait in a
queue !

local variables

parameters

return info

Stack Frame
10

a frame

A “frame” contains information
about a method call:

At runtime Java maintains a
stack that contains frames
for all method calls that are being
executed but have not completed.

Method call: push a frame for call on stack assign argument
values to parameters execute method body. Use the frame for
the call to reference local variables parameters.

End of method call: pop its frame from the stack; if it is a
function leave the return value on top of stack.

Frames for methods sum main method in the system

11

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

frame:
n ___
return info

frame:
r ___ args ___
return info

frame:
 ?
return info

Frame for method in the system
that calls method main

Example: Sum the digits in a non-negative integer

12

 ?
return info

Frame for method in the system
that calls method main: main is
then called

system

r ___ args ___
return info

main

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

13

 ?
return info

Method main calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

14

 ?
return info

n >= 10 sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

15

 ?
return info

n >= 10. sum calls sum:
system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8

10

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

16

 ?
return info

n < 10 sum stops: frame is popped
and n is put on stack: system

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82

n ___
return info

8
8

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

17

 ?
return info

Using return value 8 stack computes
 8 + 2 = 10 pops frame from stack puts
return value 10 on stack

r ___ args ___
return info

main

n ___
return info

824

n ___
return info

82
8

10

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

18

 ?
return info

Using return value 10 stack computes
 10 + 4 = 14 pops frame from stack
puts return value 14 on stack

r ___ args ___
return info

main

n ___
return info

824

10

14

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Example: Sum the digits in a non-negative integer

19

 ?
return info

Using return value 14 main stores
 14 in r and removes 14 from stack

r ___ args __
return info

main

14
14

public static int sum(int n) {
 if (n < 10) return n;
 return sum(n/10) + n%10;
}

public static void main(
 String[] args) {
 int r= sum(824);
 System.out.println(r);
}

Memorize method call execution!
20

A frame for a call contains parameters, local variables, and other
information needed to properly execute a method call.

To execute a method call:

1.  push a frame for the call on the stack,

2.  assign argument values to parameters,

3.  execute method body,

4.  pop frame for call from stack, and (for a function) push
returned value on stack

When executing method body look in frame
for call for parameters and local variables.

Questions about local variables
21

public static void m(…) {
 …
 while (…) {
 int d= 5;
 …
 }
}

In a call m(…)
when is local variable d created and when is it destroyed?
Which version of procedure m do you like better? Why?

public static void m(…) {
 int d;
 …
 while (…) {
 d= 5;
 …
 }
}

Recursion is used extensively in math
22

Math definition of n factorial E.g. 3! = 3*2*1 = 6
 0! = 1
 n! = n * (n-1)! for n > 0

Math definition of bc for c >= 0
 b0 = 1
 bc = b * bc-1 for c > 0

Easy to make math definition
into a Java function!

public static int fact(int n) {
 if (n == 0) return 1;

 return n * fact(n-1);
}

Lots of things defined recursively:
expression grammars trees ….
We will see such things later

Two views of recursive methods
23

¨  How are calls on recursive methods executed?
We saw that. Use this only to gain
understanding / assurance that recursion works

¨  How do we understand a recursive method —
know that it satisfies its specification? How do
we write a recursive method?
This requires a totally different approach.
Thinking about how the method gets executed
will confuse you completely! We now introduce
this approach.

How to understand what a call does
24

/** = sum of the digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;
 // n has at least two digits
 return sum(n/10) + n%10 ;
}

sum(654)

Make a copy of the method spec,
replacing the parameters of the
method by the arguments

sum of digits of n

spec says that the
value of a call

equals the sum of
the digits of n

sum of digits of 654

Understanding a recursive method
25

Step 1. Have a precise spec!

/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method works in the base case(s): Cases
where the parameter is small enough that the result can be
computed simply and without recursive calls.

If n < 10 then n consists of
a single digit. Looking at the
spec we see that that digit is
the required sum.

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the method spec and verify that the correct result
is then obtained.
 return sum(n/10) + n%10;

Understanding a recursive method
26

Step 1. Have a precise spec!
/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method
works in the base case(s).

 return (sum of digits of n/10) + n%10; // e.g. n = 843

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does acc. to the spec and verify correctness.

Understanding a recursive method
27

Step 1. Have a precise spec!
/** = sum of digits of n.
 * Precondition: n >= 0 */
public static int sum(int n) {
 if (n < 10) return n;

 // n has at least two digits
 return sum(n/10) + n%10 ;
}

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method.

 n/10 < n

Step 3. Look at the recursive
case(s). In your mind replace
each recursive call by what it
does according to the spec and
verify correctness.

Understanding a recursive method
28

Step 1. Have a precise spec!

Step 2. Check that the method
works in the base case(s).

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Important! Can’t do step 3 without it

Once you get the hang of it this is
what makes recursion easy! This
way of thinking is based on math
induction which we don’t cover
in this course.

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind. Done suitably point 4 is
automatically satisfied.

Writing a recursive method
29

Step 1. Have a precise spec!

Step 2. Write the base case(s): Cases in which no recursive calls
are needed Generally for “small” values of the parameters.

Step 4. (No infinite recursion) Make sure that the args of recursive
calls are in some sense smaller than the pars of the method

Step 3. Look at all other cases. See how to define these cases
in terms of smaller problems of the same kind. Then
implement those definitions using recursive calls for those
smaller problems of the same kind.

Examples of writing recursive functions
30

Step 1. Have a precise spec!

Step 2. Write the base case(s).

For the rest of the class we demo writing recursive functions
using the approach outlined below. The java file we develop
will be placed on the course webpage some time after the
lecture.

The Fibonacci Function
31

Mathematical definition:
 fib(0) = 0
 fib(1) = 1
 fib(n) = fib(n - 1) + fib(n - 2) n ≥ 2

Fibonacci sequence: 0 1 1 2 3 5 8 13 …

/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
 if (n <= 1) return n;
 // { 1 < n }
 return fib(n-2) + fib(n-1);
}

two base cases!

Fibonacci (Leonardo
Pisano) 1170-1240?

Statue in Pisa Italy

Giovanni Paganucci
1863

Check palindrome-hood
32

A String palindrome is a String that reads the same backward
and forward.
A String with at least two characters is a palindrome if
¨  (0) its first and last characters are equal and
¨  (1) chars between first & last form a palindrome:

 e.g. AMANAPLANACANALPANAMA

A recursive definition!

have to be the same

have to be a palindrome

Example: Is a string a palindrome?
33

isPal(“racecar”) returns true
isPal(“pumpkin”) returns false

/** = "s is a palindrome" */
public static boolean isPal(String s) {
 if (s.length() <= 1)
 return true;

 // { s has at least 2 chars }
 int n= s.length()-1;
 return s.charAt(0) == s.charAt(n) && isPal(s.substring(1,n));
}

Substring from
s[1] to s[n-1]

34

¨  A man a plan a caret a ban a myriad a sum a lac a liar a hoop a pint a catalpa a gas
an oil a bird a yell a vat a caw a pax a wag a tax a nay a ram a cap a yam a gay a tsar
a wall a car a luger a ward a bin a woman a vassal a wolf a tuna a nit a pall a fret a
watt a bay a daub a tan a cab a datum a gall a hat a fag a zap a say a jaw a lay a wet
a gallop a tug a trot a trap a tram a torr a caper a top a tonk a toll a ball a fair a sax a
minim a tenor a bass a passer a capital a rut an amen a ted a cabal a tang a sun an ass
a maw a sag a jam a dam a sub a salt an axon a sail an ad a wadi a radian a room a
rood a rip a tad a pariah a revel a reel a reed a pool a plug a pin a peek a parabola a
dog a pat a cud a nu a fan a pal a rum a nod an eta a lag an eel a batik a mug a mot a
nap a maxim a mood a leek a grub a gob a gel a drab a citadel a total a cedar a tap a
gag a rat a manor a bar a gal a cola a pap a yaw a tab a raj a gab a nag a pagan a bag
a jar a bat a way a papa a local a gar a baron a mat a rag a gap a tar a decal a tot a
led a tic a bard a leg a bog a burg a keel a doom a mix a map an atom a gum a kit a
baleen a gala a ten a don a mural a pan a faun a ducat a pagoda a lob a rap a keep a
nip a gulp a loop a deer a leer a lever a hair a pad a tapir a door a moor an aid a raid
a wad an alias an ox an atlas a bus a madam a jag a saw a mass an anus a gnat a lab
a cadet an em a natural a tip a caress a pass a baronet a minimax a sari a fall a ballot
a knot a pot a rep a carrot a mart a part a tort a gut a poll a gateway a law a jay a sap
a zag a fat a hall a gamut a dab a can a tabu a day a batt a waterfall a patina a nut a
flow a lass a van a mow a nib a draw a regular a call a war a stay a gam a yap a cam
a ray an ax a tag a wax a paw a cat a valley a drib a lion a saga a plat a catnip a pooh
a rail a calamus a dairyman a bater a canal Panama

Example: Count the e’s in a string
35

¨  countEm(‘e’ “it is easy to see that this has many e’s”) = 4
¨  countEm(‘e’ “Mississippi”) = 0

 /** = number of times c occurs in s */
 public static int countEm(char c String s) {
 if (s.length() == 0) return 0;

 // { s has at least 1 character }
 if (s.charAt(0) != c)
 return countEm(c s.substring(1));

 // { first character of s is c}
 return 1 + countEm (c s.substring(1));
}

substring s[1..]
i.e. s[1] …
s(s.length()-1)

