
2/16/16	

1	

CS/ENGRD 2110
SPRING 2016
Lecture 6: Consequence of type, casting; function equals
http://courses.cs.cornell.edu/cs2110

1

Announcements
2

¨  A3 now available on CMS and Piazza. Refer often to the
Piazza FAQ Note for A3

¨  Please read the assignment FAQ Notes on the Piazza before
asking a question. It might already be answered.

Assignment A3: Doubly linked Lists

3

Idea: maintain a list (2, 5, 7) like this:

3

h a1 2
a1

a6

v

succ

5
a6

a8

v

succ

7
a8

null

v

succ

This is a singly linked list

To save space we write names like a6 instead of N@35abcd00

4

4

h a1 2
a1

a6

v

succ

5
a6

a8

v

succ

7
a8

null

v

succ

How to insert a node at the beginning

(2, 5, 7)

h a3 2
a1

a6

v

succ

5
a6

a8

v

succ

7
a8

null

v

succ

8
a3

a1

v

succ (8, 2, 5, 7)

5

5

h a1 2
a1

a6

v

succ

5
a6

a2

v

succ

7
a8

null

v

succ

How to remove a node from the middle

(2, 5, 8, 7)

8
a2

a8

v

succ

k a6

h a1 2
a1

a6

v

succ

5
a6

a8

v

succ

7
a8

null

v

succ

8
a2

a8

v

succ

k a6 (2, 5, 7)

Assignment A3: Use an inner class
6

public class LinkedList {
 private int x;

 public void m(int y) { … }

}

private class CI {

}

Inside-out rule: Objects of CI can reference
components of the object of C in which they live.

In addition: methods of C can reference private
components of CI

2/16/16	

2	

Assignment A3: Generics
7

public class LinkedList {
 void add(Object elem) {…}
 Object get(int index) {…}
}

Values of linked list are
probably of class Object

public class LinkedList<E> {
 void add(E elem) {…}
 E get(int index) {…}
}

You can specify what
type of values

ns = new LinkedList<Integer>();
ns.add(“Hello”); // error
ns.add(5);
String s = ns.get(0); // error
int n = ns.get(0);

ss = new LinkedList<String>();
ss.add(“Hello”);
ss.add(5); // error
String s = ss.get(0);
int n = ss.get(0); // error

Overview ref in text and JavaSummary.pptx
8

¨  Quick look at arrays slide 50-55
¨  Casting among classes C.33-C.36 (not good) slide 34-41

¨  Consequences of the class type slide 34-41

¨  Operator instanceof slide 40

¨  Function equals slide 37-41

Homework. Learn about while/ for loops in Java. Look in text.

while (<bool expr>) { … } // syntax

for (int k= 0; k < 200; k= k+1) { … } // example

Big Picture: Type Systems
9

Andrew Myers Ross Tate

Object types in Java
• Arrays
• Subtypes
• Method resolution
• Casts
• Binary methods

Cornell Research
•  Polyglot Compiler
•  Object initialization
•  Information-flow
•  Pattern matching
•  Decidability

Classes we work with today
10

Work with a class Animal and subclasses
like Cat and Dog
Put components common to animals in Animal
Object partition is there but not shown

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5
a1

Animal

Dog�
getNoise() toString()

age

isOlder(Animal)

6

Object

Animal

Dog Cat

class hierarchy:

Animal[] v= new Animal[3];
11

declaration of
array v

v nullCreate array
of 3 elements

a6
Animal[]

0
1
2

null
null
null

Assign value of
new-exp to v

a6

Assign and refer to elements as usual:

v[0]= new Animal(…);
…
a= v[0].getAge();

null null null
 0 1 2

v
Sometimes use horizontal
picture of an array:

Which function is called by
 v[0].toString() ?
Remember, partition Object �
contains toString()

Which function is called?
12

a0 null a1v
 0 1 2

a0
Animal

Cat�
toString() toNoise()�
getWeight()

age

isOlder(Animal)

5
a1

Animal

Dog�
getString() toNoise()

age

isOlder(Animal)

6
Bottom-up or
overriding rule
says function
toString in Cat
partition

2/16/16	

3	

The type of v is Animal[]
The type of each v[k] is Animal
The type is part of the syntax/grammar of
the language. Known at compile time.

Consequences of a class type
13

a0 null a1v
 0 1 2

Animal[] v; declaration of v. Also means that each
 variable v[k] is of type Animal

Animal objects

As we see on next slide, the type of a class variable
like v[k] determines what methods can be called

From an Animal variable, can use only
methods available in class Animal

14

a0
Animalage

isOlder(Animal)

5

a0 a
 Animal

a.getWeight() is obviously illegal.
The class won’t compile.

When checking legality of a call like
 a.getWeight(…)
since the type of a is Animal, function
getWeight must be declared in Animal
or one of its superclasses.

From an Animal variable, can use only
methods available in class Animal

15

a0 a
 Animal

When checking legality of a call like
 a.getWeight(…)
since the type of a is Animal, function
getWeight must be declared in
Animal or one of its superclasses.

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

Suppose a0 contains an object of a
subclass Cat of Animal. By the rule
below, a.getWeight(…) is still illegal.
Remember, the test for legality is done
at compile time, not while the program
is running. …

From an Animal variable, can use only
methods available in class Animal

16

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

a0 c
 Cat

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

a0 a
 Animal

The same object a0, from the
viewpoint of a Cat variable

and an Animal variable

c.getWeight() is legal a.getWeight() is illegal

because
getWeight
is not
available
in class
Animal

Rule for determining legality of method call
17

a0 c
 C

a0

Object

C

m(…) must be
declared in one
of these classes

Rule: c.m(…) is legal and the program will compile
ONLY if method m is declared in C or one of its
superclasses

…

…
…

Type of v[0]: Animal

Another example
18

a0 null a1v
 0 1 2

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5
a1

Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

Should this call be allowed?
Should program compile?

 v[0].getWeight() Should this call be allowed?
Should program compile?

 v[k].getWeight()

2/16/16	

4	

Each element v[k] is of
type Animal.
From v[k], see only what is in
partition Animal and
partitions above it.

View of object based on the type
19

a0 null a1v
 0 1 2

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5
a1

Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

getWeight() not in class Animal or
Object. Calls are illegal, program
does not compile:

 v[0].getWeight() v[k].getWeight()

Components
are in lower
partitions, but
can’t see them

Animal

Casting objects
20

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

You know about casts like

 (int) (5.0 / 7.5)

 (double) 6

 double d= 5; // automatic cast

Object

Animal

Dog Cat

Discuss casts up/down class hierarchy.

 Animal h= new Cat(“N”, 5);

 Cat c= (Cat) h;

A class cast doesn’t change the object. It
just changes the perpective –how it is
viewed!

age

isOlder(Animal)

Explicit casts: unary prefix operators
21

a0

Animal

Cat�
getNoise() toString()�
getWeight()

5

c a0
Cat

Object
equals() …

Rule: an object can be cast to the name
of any partition that occurs within it —
and to nothing else.
a0 can be cast to Object, Animal, Cat.
An attempt to cast it to anything else
causes an exception

(Cat) c
(Object) c
(Animal) (Animal) (Cat) (Object) c

These casts don’t take any time. The object
does not change. It’s a change of perception

Implicit upward cast
22

a0
Animal

Cat�
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6

public class Animal {
 /** = "this Animal is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

Call c.isOlder(d)

Variable h is created. a1 is cast up to
class Animal and stored in h

d a1
Dog

c a0
Cat

h a1
Animal

Upward casts done
automatically when needed

Example
23

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6
public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h a1
Animal

Type of h is Animal. Syntactic property.
Determines at compile-time what
components can be used: those
available in Animal

If a method call is legal,
the overriding rule
determines which
implementation is called

Components used from h
24

a1
Animal

Dog

getNoise() toString()

age

isOlder(Animal)

6
public class Animal {
 /** = "this is older than h" */
 public boolean isOlder(Animal h) {
 return age > h.age;
 }

h a1
Animal

h.toString() OK —it’s in class Object partition

h.isOlder(…) OK —it’s in Animal partition

h.getWeight() ILLEGAL —not in Animal
 partition or Object partition

By overriding
rule, calls

toString() in
Dog partition

2/16/16	

5	

Explicit downward cast
25

h a0
Animal

public class Cat extends Animal {
 private float weight;
 /** return true if o is a Cat and its
 * fields have same values as this */
 public boolean equals(Object o) {
 ?
 // { h is a Cat }
 if (! super.equals(o)) return false;
 Cat c= (Cat) o ; // downward cast
 return weight == c.getWeight();
}

a0
Animal

Catweight ___
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

(Dog) o leads to runtime error.

Don’t try to cast an object to something that it is not!

Operator instanceof, explicit down cast
26

h a0
Animal

public class Cat extends Animal {
 private float weight;
 /** return true if o is a Cat and its
 * fields have same values as this */
 public boolean equals(Object o) {
 if (! (o instanceof Cat)) return false;
 // { h is a Cat }
 if (! super.equals(o)) return false;
 Cat c= (Cat) o ; // downward cast
 return weight == c.getWeight();
}

a0
Animal

Catweight ___
getNoise() toString()�
getWeight()

age

isOlder(Animal)

5

<object> instanceof <class>

true iff object has a partition for class

