
11/02/2016

1

CS/ENGRD 2110

SPRING 2016
Lecture 5: Local vars; Inside-out rule; constructors

http://courses.cs.cornell.edu/cs2110

1

References to text and JavaSummary.pptx

2

 Local variable: variable declared in a method body

 B.10–B.11 slide 45

 Inside-out rule, bottom-up/overriding rule C.15 slide 31-32

and consequences thereof slide 45

 Use of this B.10 slide 23-24 and super C.15 slide 28, 33

 Constructors in a subclass C.9–C.10 slide 24-29

 First statement of a constructor body must be a call on another

constructor —if not Java puts in super(); C.10 slide 29

Homework

3

Visit course website, click on Resources and then on Code Style

Guidelines. Study

 4.2 Keep methods short

 4.3 Use statement-comments …

 4.4 Use returns to simplify method structure

 4.6 Declare local variables close to first use …

Local variables

4

/** Return middle value of a, b, c (no ordering assumed) */

public static int middle(int a, int b, int c) {

 if (b > c) {

 int temp= b;

 b= c;

 c= temp;

 }

 if (a <= b) {

 return b;

 }

 return Math.min(a, c);

}

Parameter: variable

declared in () of

method header

middle(8, 6, 7)

a 8 c 7 b 6

Local variable:

variable

declared in

method body
temp ?

All parameters and local variables

are created when a call is executed,

before the method body is executed.

They are destroyed when method

body terminates.

Scope of local variables

5

/** Return middle value of a, b, c (no ordering assumed) */

public static int middle(int a, int b, int c) {

 if (b > c) {

 int temp= b;

 b= c;

 c= temp;

 }

 if (a <= b) {

 return b;

 }

 return Math.min(a, c);

}

Scope of local variable (where it

can be used): from its declaration

to the end of the block in which it

is declared.

block

Principle: declaration placement

6

/** Return middle value of a, b, c (no ordering assumed) */

public static int middle(int a, int b, int c) {

 int temp;

 if (b > c) {

 temp= b;

 b= c;

 c= temp;

 }

 if (a <= b) {

 return b;

 }

 return Math.min(a, c);

}

Principle: Declare a local variable

as close to its first use as possible.

Not good! No need for reader to

know about temp except when

reading the then-part of the if-

statement

11/02/2016

2

Assertions promote understanding

7

/** Return middle value of a, b, c (no ordering assumed) */

public static int middle(int a, int b, int c) {

 if (b > c) {

 int temp= b;

 b= c;

 c= temp;

 }

 if (a <= b) {

 return b;

 }

 return Math.min(a, c);

}

Assertion: Asserting that b <= c

at this point. Helps reader

understand code below.

/** Return middle value of a, b, c (no ordering assumed) */

public static int middle(int a, int b, int c) {

 if (b > c) {

 int temp= b;

 b= c;

 c= temp;

 }

 // b <= c

 if (a <= b) {

 return b;

 }

 // a and c are both greater than b

 return Math.min(a, c);

}

Bottom-up/overriding rule

8

toString() { … }

Object

Person@20

Person

toString()

name “Turing”

turing Person@20
Which method toString()

is called by

 turing.toString() ?

Overriding rule or

bottom-up rule:

To find out which is used,

start at the bottom of the

object and search upward

until a matching one is

found.

Calling a constructor from a constructor

9

public class Time

 private int hr; //hour of day, 0..23

 private int min; // minute of hour, 0..59

 /** Constructor: instance with h hours and m minutes */

 public Time(int h, int m) { hr = h; min = m; assert …; }

 /** Constructor: instance with m minutes … */

 public Time(int m) {

 hr = m / 60;

 min = m % 60;

 }

 …

}

Want to change body

to call first constructor

Calling a constructor from a constructor

10

public class Time

 private int hr; //hour of day, 0..23

 private int min; // minute of hour, 0..59

 /** Constructor: instance with h hours and m minutes … */

 public Time(int h, int m) { hr = h; min = m; assert …; }

 /** Constructor: instance with m minutes … */

 public Time(int m) {

 this(m / 60, m % 60);

 }

 …

}
Use this (not Time) to call another

constructor in the class.

Must be first statement in constructor body!

Inside-out rule

11

Inside-out rule: Code in a construct can reference names declared in

that construct, as well as names that appear in enclosing constructs.

(If name is declared twice, the closer one prevails.)

Person

Person@a0

name

getNameWithSep() {

 return name + sep;

}

Person

Person@a1

name

getNameWithSep () {

 return name + sep;

}

Person’s objects and static components

sep Person

(static)

/** Constructor: person “f n” */

public Person(String f, String l) {

 first= n;

 last= l;

}

/** Constructor: PhD “Dr. f m. l”*/

public PhD(String f, char m, String l) {

 super(f, l);

 middle= m;

}

new PhD(“Ross”, ‘E’, “Tate”);

Constructing with a Superclass
12

PhD@a0

Object

first last

toString()

Person

PhD

middle

getName() toString()

null null

‘\0’

“Ross” “Tate”

‘E’

Use super (not Person) to

call superclass constructor.

Must be first statement

in constructor body!

11/02/2016

3

About super

13

Within a subclass object,

super refers to the

partition above the one

that contains super.

Because of the

keyword super,

the call toString

here refers to the

Person partition.

PhD@a0

Object

first last

toString()

Person

PhD middle

getName() toString()

“Ross” “Tate”

‘E’

toString() { … super.toString() … }

Bottom-Up and Inside-Out
14

PhD@a0

Object

first last

toString()

Person

PhD middle

getName() toString()

“Ross” “Tate”

‘E’

getName() toString()

super

Person (static)

PhD (static)

title “Dr.”

sep ‘ ‘

Without OO …

15

Without OO, you would write a long involved method:

public double getName(Person p) {

 if (p is a PhD)

 { … }

 else if (p hates formality)

 { … }

 else if (p prefers anonymity)

 { … }

 else …

}

OO eliminates need for many of

these long, convoluted methods,

which are hard to maintain.

Instead, each subclass has its own

getName.

Results in many overriding

method implementations, each of

which is usually very short

