CS/ENGRD 2110
SPRING 2016

Lecture 5: Local vars; Inside-out rule;
http://courses.cs.cornell.edu/cs2110

Homework

Visit course website, click on Resources and then on Code Style
Guidelines. Study

4.2 Keep methods short
4.3 Use statement-comments ...
4.4 Use returns to simplify method structure

4.6 Declare local variables close to first use ...

Scope of local variables

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, intb, intc) {

if(b>c){

int temp=b;

b=c; block

c=temp;
}
. _ Scope of local variable (where it
if (;:Jrg)b{ can be used): from its declaration
} ' to the end of the block in which it

is declared.

return Math.min(a, c);

}

11/02/2016

References to text and JavaSummary.pptx

o1 Local variable: variable declared in a method body
B.10-B.11 slide 45

Inside-out rule, bottom-up /overriding rule C.15 slide 31-32
and consequences thereof slide 45

0 Use of this B.10 slide 23-24 and super C.15 slide 28, 33
Constructors in a subclass C.9—-C.10 slide 24-29

First statement of a constructor body must be a call on another
constructor —if not Java puts in super(); C.10 slide 29

[m}

[m}

[m}

Local variables middle(8, 6, 7)

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, int b, int c) {

if (b>c){ Parameter: variable
int temp=b; declared in () of
b= ¢ ' Local variable: method header
o= témp' variable

} ' declared in a|8|b @ c

method body

i (b { temp

IT(a<=
return b: All parameters and local variables

} are created when a call is executed,

before the method body is executed.

return Math.min(a, c); They are destroyed when method
body terminates.
} Y

Principle: declaration placement

/** Return middle value of a, b, ¢ (no ordering assumed) */
public static int middle(int a, int b, int c) {

:?Eginls)'{ Not good! No need for reader to
temb= b know about temp except when
b= CP_ ! reading the then-part of the if-
. statement
c=temp;
}
if (a<=b) {
return b;
} Principle: Declare a local variable
as close to its first use as possible.

return Math.min(a, c);
1

11/02/2016

Assertions promote understanding Bottom-up/overriding rule
/ ddle value of a, b, ¢ (d d) */
** Return middle value of a, b, ¢ (no ordering assumed) * . .
. . . oo . ‘Which method toSt . —
public static int middle(int a, int b, int ¢) { Which method toSiring() turing | Person@20
. is called by
if(b>c){
int temp=Db; turing.toString() ? Person@20
b=c; Object
c= temp; Overriding rule or \J;
} Assertion: Asserting that b <= ¢ bottom-up rul.e: . toString()
/b <=¢ ——— at this point. Helps reader To find out which is used’
if (a<=b) { understand code below. start at the bottom of the Person
returnb; object and search upward —
} until a matching one is name
/l'aand c are both greater than b found. toString() { ... }
return Math.min(a, c);
}
Calling a constructor from a constructor Calling a constructor from a constructor
. . n . .
public class Time public class Time
private int hr; //hour of day, 0..23 privateint hr; //hour of day, 0..23
private int min; // minute of hour, 0..59 private int min; // minute of hour, 0..59
/** Constructor: instance with h hours and m minutes */ /** Constructor: instance with h hours and m minutes ... */
public Time(int h, int m) { hr = h; min = m; assert ...; } public Time(int h, int m) { hr = h; min = m; assert ...; }
/** Constructor: instance with m minutes ... */ /** Constructor: instance with m minutes ... */
public Time(int m) { public Time(int m) {
hr =m/60; this(m/ 60, m % 60);
min =m % 60; }
¥ Want to change body } "Use this (not Time) to call another
} to call first constructor constructor in the class.
Must be first statement in constructor body!
Inside-out rule Constructing with a Superclass

[2 |
/** Constructor: person “f n” */
public Person(String f, String I) {

first=n;

Person last=I;

|nside-oui rule: Code in a construct can reference names declared in
that construct, as well as names that appear in enclosing constructs.
(If name is declared twice, the closer one prevails.)

PhD@a0

sep Use super (not Person) to)
Person@a0 (static) } per (not) toString()
nam Person call superclass constructor.
ame €rso; Person
Person@ql [** Congtructor: PhD “Dr. f m. I”*/

getNa;;i:\Withsep() ! ublic/PhD(String f, char m, String | ; “Tate”
return hame + sep; name M psuper(f |)(gt) g 1) { first last
} getNameWithSep () { middle= m;\ Must be first statement getName() toString()
return name + sep; } in constructor body! PhD
}
new PhD(“Ross”, ‘E’, “Tate™); middle @

Person’s objects and static components

11/02/2016

About super Bottom-Up and Inside-Out
[13] KN
Person (static)
Within a subclass object,

. super refers to the PhD@a0 PhD (static)
toString() partition above the one oo
\m that contains super. toString() —
Person
first ‘ “Ross” ‘ last | “Tate”

- “Tate”
getName() toString() Because of the first last

. keyword super, getName() toString()
middle : PhD the call toString
here refers to the middle E PhD super

Person partition.

PhD@a0

toString() { ... super.toString()
getName() toString()

Without OO ...

[5]
Without OO, you would write a long involved method:

public double getName(Person p) {

if (p is a PhD) OO eliminates need for many of

{1} these long, convoluted methods,
else if (p hates formality) which are hard to maintain.
{...} Instead, each subclass has its own
else if (p prefers anonymity) getName.
{...} Results in many overriding
else ... method implementations, each of
) which is usually very short

