CS/ENGRD 2110
SPRING 2016

Announcements

We're pleased with how many people are already Wenking, on flag!
A1, as evidenced by Piazza activity /

Please be sure to look at Piazza note @44 every day for
frequently asked questions and answers

Groups: Forming a group of two? Do it well before you submit — at
least one day before. Both members must act: one invites, the other
accepts. Thereafter, only one member has to submit the files.

A2: Practice with strings

We will give you our test cases soon!

References to text and JavaSummary.pptx

A bit about testing and test cases

Class Obiject, superest class of them all.
Text: C.23 slide 30

Function toString() C.24 slide 31-33
Overriding a method C15-C16 slide 31-32
Static components (methods and fields) B.27 slide 21, 45

Java application: a program with a class that declares a
method with this signature:

public static void main(String[])

—
[

Homework

Read the text, about applications: Appendix A.1—-A.3
Read the text, about the if-statement: A.38—A.40

Visit course website, click on Resources and then on Code
Style Guidelines. Study

2. Format Conventions
4.5 About then-part and else-part of if-statement

A bit about testing

Test case: Set of input values, together with the expected output.

Develop test cases for a method from its specification --- even
before you write the method’s body.

/** returns the number of vowels in word w.
Precondition: w contains at least one letter and nothing but letters */
public int numberOfVowels(String w) {

Developing test cases

¥ first, in “critique” |
mode, can prevent
wasted work and
eIrors

How many vowels in each of these words?
creek

SYZygy
yellow

Class W (for Worker)

/** Constructor: worker with last name n, SSN s, boss b (null if none).
Prec: nnot null, sin 0..999999999 with no leading zeros.*/
public W(String n, int s, W b)

/** = worker's last name */

public String getLname() W@af W
/#% = last 4 SSN digits */ Iname | “Obama
public String getSsn() ssn 123456789

boss null

/** = worker's boss (null if none) */
public W getBoss() W(...) getlLname()

%% et hoss o b */ getSsn() getBoss() setBoss(W)

public void setBoss(W b) toString()
equals(Object) hashCode()

Contains other methods!

Class Obiject: the superest class of them all

Java: Every class that does not
extend another extends class We draw obiect like this

Object. That is,

blic class W {...} W@

public class :
toString() ljesl

is equivalent to equals(Object) hashCode()

public class W extends Object {...} LW

Iname “Oquq”

ssn 123456789
boss null

We often omit this partition to

reduce clutter; we know that it W(...) getLname()
is always there. getSsn(), getBoss() setBoss(W)

A note on design

Don’t use extends just to get access to hidden
members!

A should extend B if and only if A “is a” B
A PhDTester is not a PhD Student!
An elephant is an animal, so Elephant extends Animal
A car is a vehicle, so Car extends Vehicle

An instance of any class is an object, so
AnyClass extends java.lang.Obiject

The inheritance hierarchy should reflect modeling
semantics, not implementational shortcuts

What is “the name of” the object?

The name of the object below 1s
PhD@aal1bb24

It contains a pointer to the object —1.e. its address in memory, and
you can call 1t a pointer 1f you wish. But it contains more than that.

Variable e, declared as

PhD e;
PhD@aal1bb24

contains not the object but the PrD
name of the object (or a pointer . —
to the object). name | Mumsie
e | PhD@aal1bb24 adl|null | ad2|null
PhD .
advisees |1

Method toString

toString() in Obiject returns the name of the object: W@af

Java Convention: Define toString() in cl W@af
any class to return a representation of an W@ af
object, giving info about the values in its Obiect
fields. toString() ...
New definitions of toString() override ‘ W
the definition in Object.toString() Iname | “Obama’
, : ssn 123456789
In appropriate places, the expression
boss null

¢ automatically does c.toString()
getSsn() ...

c.toString() calls this method == t0String() ...

Method toString

toString() in Obiject returns the name of the object: W@af

public class W { cl__W@af
W@af
Obiject
/** Return a representation of this object */ toString() ...
public String toString() { ‘ W
return “Worker ” + Iname iname [“Obama”
+ “ has SSN 777-77-" + getSsn()
+ (boss == null ssn 123456789
7 boss null

: ““ and boss ”’ + boss.lname);

¥

getSsn() ...

c.toString() calls this method = f0String() ...

Another example of toString()

/** An 1nstance represents a point (X, y) in the plane */
public class Point {

) . , Point@fa8
private int x; // x-coordinate :
private int y; // y-coordinate il

X| 9 |yl 5
/** = repr. of this point in form “(x,y)" */
public String toString(‘)‘ {” (9, 5)

return “(C + x + <, +y +)7;

¥

Function toString should give the values in the
fields in a format that makes sense for the class.

What about this

this keyword: this evaluates to the name of the object in
which it occurs

Makes it possible for an object to access its own name (or
pointer)

Example: Referencing a shadowed class field

public class Point { public class Point {
public int x = 0; public int x = 0;
public int y = 0; public int y = 0;
//constructor //constructor
public Point(int x, int y) { public Point(int x, int y) {
X = X; this.x = x;
Y = Yi this.y = y;
} }
} }

Inside-out rule shows that (@ (@)
field x is inaccessiblel (2

Intro to static components

/** = “this object is ¢’ s boss” . | |
Pre: ¢ is not null. */ x.1sBoss(y) is false
public boolean isBoss(W ¢) {

y.1sBoss(x) 1s true
return this == c.boss;

J x| W@b4 y |IW@af
Spec: return the value of W@b4 W@af
that true-false sentence. W W
True if this object is c’s T Ta——
Iname | " Jo” Iname | "Om
boss, false otherwise
boss W@af boss | null
keyword this evaluates isBoss(W ¢) { isBoss(W ¢) {
to the name of the object return

in which it appears this == c.boss; }

Intro to static components

Body doesn’t refer to any

/** ="bisc sboss”. field or method in the object.
Pre: b and ¢ are not null. */ Why put method in object?

public boolean isBoss(W b, W.£) {
return b == c.getBoss();

x(W@b4| vy |W@af

)
W@b4 W@af
W W
‘o L ” lname | “Jo” lname | “Om”
/** = "this objecti1s ¢ s boss .
Pre: ¢ is not null. */ boss \W@af boss | null
public boolean isBoss(W ¢) { e 21 ssh| 35
return this == c.boss; isBoss(W) isBoss(W)

) isBoss(W, W) isBoss(W, W)

Intro to static components

static: there is only one

/%% = “bisc’ s boss” . copy of the method. It is

Pre:bandc a null. */
public static boolean isBoss(W b, W ¢) {
return b == c.getBoss();

not in each object

} Box for W (objects, static components)
W@b4 W@af
W W
lname | “Jo” | Iname | “Om”
Preferred: boss ' W@af boss | null
W.isBoss(x, y) ssn| 21 ssn| 35
isBoss(W) isBoss(W)

X|W@b4 y W@af isBoss(W,W)

Good example of static methods

java.lang.Math

http:/ /docs.oracle.com /javase /8 /docs/api/java /lang /Math.html

Java application

Java application: bunch of classes with at
least one class that has this procedure:

public static void main(String[] args) {
Type String[]: array of

} elements of type String.
We will discuss later

Running the application effectively calls method main

Command line arguments can be entered with args

Use of static variables: Maintain info about created
objects

public class W {
private static int numObs; // number of W objects created

/** Constructor: */

public W(...) {

numObs= numObijs + 1;

) W@bd W@12

) W W
To have numQObs contain the Iname| “Ob” Iname | “Big”
number of objects of class W
that have been created, simply numObs | 2
increment it in constructors.

Box for W

Uses of static variables:
Implement the Singleton pattern

Only one Singleton can ever exist.
public class Singleton {

private static final Singleton instance= new Singleton();

private Singleton() {} // ... constructor

public static Singleton getinstance() {

return instance; Singleton@x3k3

} Singleton

// ... methods

instance | Singleton@x3k3

Box for Singleton

Class java.awt.Color uses static variables

An instance of class Color describes a color in the RGB (Red-Green-
Blue) color space. The class contains about 20 static variables, each

of which is (i.e. contains a pointer to) a non-changeable Color object
for a given color:

public static final Color black = ...;
public static final Color blue = ...;
public static final Color cyan = new Color(0, 255, 255);
public static final Color darkGray = ...;

public static final Color gray = ...;

public static final Color green = ...;

