
2/3/16	

1	

CS/ENGRD 2110
SPRING 2016
Lecture 3: Fields, getters and setters, constructors, testing
http://courses.cs.cornell.edu/cs2110

1

CS2110 Announcements
2

A1 now on course website and Piazza.
Piazza

¨  Check course Piazza regularly for announcements.

¨  To learn about issues with A1, check the pinned A1 FAQs
(Frequently Asked Questions) note often!

Take course S/U?

OK with us. Check with your advisor/major. To get an S, you need
to do at least C– work. Do D+ work or less, you get a U.

VideoNote.com.

Last semester’s videos are under 2016! Don’t look for fall 2015.

Assignment A1
3

Write a class to maintain information about PhDs –their advisor(s)
and date of PhD.
Objectives in brief:
¨  Get used to Eclipse and writing a simple Java class
¨  Learn conventions for Javadoc specs, formatting code (e.g.

indentation), class invariants, method preconditions
¨  Learn about and use JUnit testing
Important: READ CAREFULLY, including Step 7, which reviews what
the assignment is graded on.
Groups. You can do the assignment with 1 other person. FORM
YOUR GROUP EARLY! Use Piazza Note @5 to search for partner!

Recommended time-table for doing A1
4

Start A1 the day before it is due? You may be frustrated, upset, rushed
because you can’t get the help you need. With 500 students, too many
will be trying to get help at the last minute. Not a good educational
experience. Instead, use following schedule, which gives you a day or
two after each part to get help if you need it:
4 Feb. Spend 20 minutes reading the assignment.
6 Feb. Write and test the Group A methods. This includes writing the
Junit test procedure for the group.
7 Feb. Write and test the Group B methods AND the Group C methods.
8 Feb. Write and test the GroupD methods.11
10 Feb. Do point 7 of the handout: Review the learning objectives and
check each of the items given in point 7. Submit on the CMS.
CHECK the pinned A1 note on the Piazza every day.

Homework
5

1. Course website will contain classes Time and TimeTester. The
body of the one-parameter constructor is not written. Write it.
The one-parameter constructor is not tested in TimeTester. Write a
procedure to test it.

2. Visit course website, click on Resources and then on Code Style
Guidelines. Study

 1. Naming conventions

 3.3 Class invariant

 4. Code organization

 4.1 Placement of field declarations

 5. Public/private access modifiers
3. Look at slides for next lecture; bring them to next lecture

Overview
6

¨  An object can contain variables as well as methods.
Variable in an object is called a field.

¨  Declare fields in the class definition. Generally, make fields
private so they can’t be seen from outside the class.

¨  May add getter methods (functions) and setter methods
(procedures) to allow access to some or all fields.

¨  Use a new kind of method, the constructor, to initialize fields of
a new object during evaluation of a new-expression.

¨  Create a JUnit Testing Class to save a suite of test cases.

2/3/16	

2	

References to text and JavaSummary.pptx
7

Declaration of fields: B.5-B.6 slide 12
Getter/setter methods: B.6 slide 13, 14

Constructors: B.17-B.18 slide 15

Class String: A.67-A.73

JUnit Testing Class: none slide 74-80

Overloading method names: B-21 slide 22

 class Time
8

Object contains the time of day in hours and minutes.
Methods in object refer to fields in object.

Could have an array of such objects to list the times at which
classes start at Cornell.

With variables t1 and t2 below,

t1.getHour() is 8
t2.getHour() is 9

t2.toString() is “09:05”
Time@150

Time hr 8

min 0
getHour()
getMin()
toString()

Time@fa8
Time hr 9

min getHour()
getMin()
toString()

5 t1 Time@150

t2 Time@fa8

Class Time
9

/** An instance maintains a time of day */
public class Time {

 private int hr; //hour of the day, in 0..23

 private int min; // minute of the hour, in 0..59

}

Time@fa8
Time hr 9

min 5

Access modifier private:
can’t see field from outside class
Software engineering principle:
make fields private, unless there
is a real reason to make public

Class invariant
10

/** An instance maintains a time of day */
public class Time {

 private int hr; // hour of the day, in 0..23

 private int min; // minute of the hour, in 0..59

}

Class invariant:
collection of defs of
variables and
constraints on them
(green stuff)

Software engineering principle: Always write a clear,
precise class invariant, which describes all fields.

Call of every method starts with class invariant true
and should end with class invariant true.

Frequent reference to class invariant while
programming can prevent mistakes.

Getter methods (functions)
11

/** An instance maintains a time of day */
public class Time {
 private int hr; // hour of the day, in 0..23
 private int min; // minute of the hour, in 0..59
 /** Return hour of the day */
 public int getHour() {
 return hr;
 }
 /** Return minute of the hour */
 public int getMin() {
 return min;
 }
}

}

Time@fa8
Time hr 9

min 5 getHour()
getMin()

Spec goes before method.
It’s a Javadoc comment
—starts with /**

A little about type (class) String
12

public class Time {
 private int hr; //hour of the day, in 0..23
 private int min; // minute of the hour, in 0..59
 /** Return a represention of this time, e.g. 09:05*/
 public String toString() {
 return prepend(hr) + ":" + prepend(min);
 }
 /** Return i with preceding 0, if
 necessary, to make two chars. */
 private String prepend(int i) {
 if (i > 9 || i < 0) return "" + i;
 return "0" + i;
 }
 …

}

Java: double
quotes for

String literals

Java: + is
String

catenation

“helper” function is private, so it
can’t be seen outside class

Catenate with empty String to
change any value to a String

2/3/16	

3	

Concatenate or catenate?
13

I never concatenate strings;
I just catenate those little things.

Of syllables few,

I'm a man through and through.

Shorter words? My heart joyfully sings!

Setter methods (procedures)
14

/** An instance maintains a time of day */
public class Time {
 private int hr; //hour of the day, in 0..23
 private int min; // minute of the hour, in 0..59

 …

}

Time@fa8
Time hr 9

min 5 getHour()
getMin()
toString()

No way to store
value in a field!
We can add a
“setter method”

/** Change this object’s hour to h */
public void setHour(int h) {
 hr= h;
}

setHour(int) setHour(int) is now in the object

Setter methods (procedures)
15

/** An instance maintains a time of day */
public class Time {
 private int hr; //hour of day, in 0..23
 private int min; // minute of hour, in 0..59

 …

}

Time@fa8
Time hr 9

min 5

/** Change this object’s hour to h */
public void setHour(int h) {
 hr= h;
}

getHour()
getMin()
toString() setHour(int)

Do not say
 “set field hr to h”
User does not know
there is a field. All
user knows is that

Time maintains hours
and minutes. Later,
we show an imple-

mentation that
doesn’t have field h

but “behavior” is the
same

Test using a JUnit testing class
16

In Eclipse, use menu item File à New à JUnit Test Case to
create a class that looks like this:

import static org.junit.Assert.*;
import org.junit.Test;

public class TimeTester {
 @Test
 public void test() {
 fail("Not yet implemented");
 }
}

Select TimeTester in Package
Explorer.

Use menu item Run à Run.

Procedure test is called, and
the call fail(…) causes
execution to fail:

Test using a JUnit testing class
17

…

public class TimeTester {
 @Test
 public void testConstructor() {
 Time t1= new Time();
 assertEquals(0, t1.getHour());
 assertEquals(0, t1.getMin();
 assertEquals("00:00", t1.toString());
 }
}

Write and save a suite of
“test cases” in TimeTester,
to test that all methods in
Time are correct

Store new Time object in t1.

Give green light if expected value equals
 computed value, red light if not:
assertEquals(expected value, computed value);

Test setter method in JUnit testing class
18

public class TimeTester {

 …

 @Test
 public void testSetters() {
 Time t1= new Time();
 t1.setHour(21);
 assertEquals(21, t1.getHour());
 }
}

Time@fa8
Time hr 9

min 5
getHour()
getMin()
toString() setHour(int)

TimeTester can have
several test methods, each
preceded by @Test.

All are called when menu
item Runà Run is selected

2/3/16	

4	

Constructors —new kind of method
19

public class C {
 private int a;
 private int b;
 private int c;
 private int d;
 private int e;
}

C has lots of fields. Initializing an
object can be a pain —assuming
there are suitable setter methods

C var= new C();
var.setA(2);
var.setB(20);
var.setC(35);
var.setD(-15);
var.setE(150);

But first, must write a new method
called a constructor

C var= new C(2, 20, 35, -15, 150);

Easier way to initialize the fields, in
the new-expression itself. Use:

Constructors —new kind of method
20

Time@fa8
Time hr 9 min 5

getHour() getMin()
toString() setHour(int)
Time(int, int)

/** An object maintains a time of day */
public class Time {
 private int hr; //hour of day, 0..23
 private int min; // minute of hour, 0..59
 /** Constructor: an instance with
 h hours and m minutes.
 */
 public Time(int h, int m) {
 hr= h;
 min= m;
 }

Purpose of constructor:
Initialize fields of a
new object so that its
class invariant is true

No return type
or void

Name of constructor
is the class name

Memorize!

Precondition: h in 0..23, m in 0..59 Need precondition

Revisit the new-expression
21

Time@fa8
Time hr 0 min 0

getHour() getMin()
toString() setHour(int)
Time(int, int)

Syntax of new-expression: new <constructor-call>

If you do not declare a constructor,
Java puts in this one:
public <class-name> () { }

Evaluation of new-expression:
1. Create a new object of class, with default values in fields

Example: new Time(9, 5)

2. Execute the constructor-call

9 5

3. Give as value of the expression
 the name of the new object

Time@fa8

How to test a constructor
22

public class TimeTester {
 @Test
 public void testConstructor1() {
 Time t1= new Time(9, 5);
 assertEquals(9, t1.getHour());
 assertEquals(5, t1.getMin();
 }
 …
}

Create an object using the constructor. Then check that all
fields are properly initialized —even those that are not
given values in the constructor call

Note: This also checks
the getter methods! No
need to check them
separately.

But, main purpose:
check constructor

A second constructor
23

Time@fa8
Time hr 9 min 5

getHour() getMin()
toString() setHour(int)
Time(int, int) Time (int)

/** An object maintains a time of day */
public class Time {
 private int hr; //hour of day, 0..23
 private int min; // minute of hour, 0..59
 /** Constructor: an instance with
 m minutes.
 Precondition: m in 0..(23*60 +59) */
 public Time(int m) {
 hr= m/60; min= m%60;
 ??? What do we put here ???
 }
 …

Time is overloaded: 2
constructors! Have
different parameter
types. Constructor call
determines which one
is called

new Time(9, 5)
new Time(125)

Generate javadoc
24

¨  With project selected in Package explorer, use menu item
Project -> Generate javadoc

¨  In Package Explorer, click on the project -> doc -> index.html

¨  You get a pane with an API like specification of class Time, in
which javadoc comments (start with /**) have been extracted!

¨  That is how the API specs were created.

2/3/16	

5	

Method specs should not mention fields
25

public class Time {
 private int hr; //in 0..23
 private int min; //in 0..59
 /** return hour of day*/
 public int getHour() {
 return h;
 }

/** return hour of day*/
public int getHour() {
 return min / 60;
}

Time@fa8
Time hr 9

min 5
getHour()
getMin()
toString() setHour(int)

public class Time {
 // min, in 0..23*60+59
 private int min;

Time@fa8
Time min 545

getHour() getMin()
toString() setHour(int)

Specs of methods stay the same.
Implementations, including fields, change!

Decide
to change
implemen

-tation

