
Recitation 13

Software Engineering Practices and
Introduction to Design Patterns

Software Development is chaotic
During that 90% time:

Good engineers think,
research, read the
codebase, and recognize
design patterns

How to be a good great engineer
1. Focus on code clarity

a.  see style guidelines on course webpage

2. Adopt practices to help avoid bugs

3. Utilize design patterns

Coding Strategies

The future of your code...

You write code

Others read it

Others write code
that depends on it

Others modify it
You have to modify
or fix a bug in it

You have to extend it

You may have
forgotten how it works

Method design

Good methods usually:
●  are short
●  are reusable
●  have few parameters
●  have few side-effects

Consequences of good
methods:
●  can test them independently
●  make code more readable
●  reduce likelihood of typos
●  reduce redundancies

Good methods have a
clear, crisp purpose

Wrapper methods

Example: ArrayList

public boolean contains(Object o) {

return indexOf(o) >= 0;
}

public boolean isEmpty() {

 return size == 0
}

Wrapper methods don’t add much new functionality but
increase readability and reduce typos

Use abstractions
Any time you are unsure whether some behavior may
change, abstract it (behind an interface, method, etc)

class Person {
 public boolean marry(Person p) {
if (isRelated(p)) return false;
...

}
public boolean getRelatives(Person[] people) {

 for (Person p : people) {
 if (isRelated(p)) ...
 }

}
}

if we change our definition
of “is related”, the rest of the
program remains intact

Clarity vs Efficiency

efficient
organized, understandable,
error-free, extensible

There is often a trade off between the two.
We want to find the right balance.

Examples:
●  linear search vs binary search
●  using bit manipulation vs regular arithmetic
●  working directly with char arrays vs Strings
●  caching objects locally for later use vs throwing them away

Premature optimization
Premature Optimization: trying to make code more efficient from
the start. This is usually bad.

Why?
●  You don’t know in advance how slow different parts of the

program will be; you may be wasting your efforts optimizing parts
that are pretty good already

●  You will often sacrifice clarity for efficiency
●  It is almost always easier to take well-organized code and

optimize it later than it is to take poorly-organized code and
clarify it

How to optimize

Start simple Correct program

Code profiling
(timing how long different parts take)

Optimize parts that slow
down the program the most

Start with optimizations that are obvious
and won’t hurt code clarity (ex: using
Java.utils HashSet and HashMap

Can use a code-profiler tool or just use built-in
methods like System.currentTimeMillis()

A huge advantage of this process is being
able to compare more efficient but
complex methods to simpler methods to
ensure correctness!

Composition vs Inheritance
CarA

start()
drive()

CarD
needs CarB’s start
and CarC’s drive

CarB
start()
drive()

CarC
start()
drive()

If you find your class hierarchy
needing to inherit from multiple
classes or you need more flexible
objects, try composition:

Battery1
start()

Battery2
start()

Engine1
drive()

Engine2
drive()

Cars have batteries and engines.
They can pick which type, and
even change on the fly

How to avoid bugs!

Never use copy/paste!
●  You may introduce

needless bugs
unknowingly

●  You should probably

refactor your code to
a new helper method

What NOT to do: Shotgun debugging
Shotgun debugging:
●  a process of making relatively

undirected changes to software in
the hope that a bug will be perturbed
out of existence.

●  has a relatively low success rate

and can be very time consuming

http://en.wikipedia.org/wiki/Shotgun_debugging

What if I change || to &&?

What if I add parentheses
here?

What if I subtract 1 from
this value?

Rubber duck debugging
●  The process of walking a

rubber duck through your
code, explaining out loud

●  Try to do this before even

running your code!

●  Rely more on your reasoning

than the test output

http://en.wikipedia.org/wiki/Rubber_duck_debugging

Class diagrams

A

B C

Class diagrams help us visualize the design of a system.

class A

Arrow shows
dependency on class C

Dependency:
The dependent class
relies on the
independent class.

Example:
Class A has a
parameter, local
variable, or field that is
of type C. Class C is
isolated from A and B.

Animal

Dog

Inheritance arrow

Generally, avoid cyclic dependencies

A

B C

Ideally, your module structure should be a directed acyclic graph.

Cyclic dependencies:
1.  Make your code harder to read

and maintain
2.  Make it difficult to isolate

portions of your codebase to
find bugs and test

3.  Make it hard to ensure all
objects are updated and valid

D

E

Utilize Design Patterns

Design Patterns
-  solutions to general code design problems
-  A description, a template, not code

Why?
1.  Common terminology for developers
2.  Best Practices that stand the test of time
3. Makes code reliable and effective

Design Patterns

We will talk about two common patterns:
Factory and
Decorator

Creational
patterns

Structural
patterns

Behavioral
patterns

Design Patterns: Creational
Creational patterns:
Provide ways to create
objects without using the
new keyword.

Popular example:
●  Factory method

Creational
patterns

Structural
patterns

Behavioral
patterns

Problem

AutomotiveCompany

Car
Car(Engine,Door[],Wheel[])

Wheel

BigWheel SmallWheel
class AutomotiveCompany
shouldn’t have to know about class
Engine, Door, and Wheel!

Engine Door

Fix: Factory method Pattern
AutomotiveCompany

BigWheel SmallWheel

VehicleFactory

In AutomotiveCompany:

Car c = VehicleFactory.makeCar();

Car
Car(Engine,Door[],Wheel[])

Wheel Engine Door

AutomotiveCompany now
doesn’t “know” anything about
Engine, Door, and Wheel.

Benefits of Factory method

1.  More encapsulation!
a. AutomotiveCompany cannot “see” how

objects are constructed
b. AutomotiveCompany is more readable

with fewer dependencies

2.  Allows for an Object Pool!

a.  Don’t necessarily need to reallocate
objects! Can reuse old ones.

Design Patterns: Structural
Structural patterns:
Patterns that identify and
realize relationships
between entities

Popular example:
●  Decorator

Creational
patterns

Structural
patterns

Behavioral
patterns

Scenario: Sandwich Shop

Menu
Veggie Sandwich … $4
Tuna Sandwich … $5
Add Cheese … $1
Add Olives … $2
Add Tomato … $3

We need to return the correct price.
How do we represent all combinations of toppings at runtime/dynamically?

Problem: Sandwich Shop
TunaSandwich

TunaTomatoSandwich

TunaTomatoOliveSandwich

TunaOliveSandwich TunaCheeseSandwich

TunaTomatoCheeseSandwich

TunaTomatoOliveCheeseSandwich

Same
complicated
structure with
VeggieSandwich!

Fix: Decorator Pattern
AbstractSandwich

getPrice();

TunaSandwich

SandwichDecorator

AbstractSandwich sandwich;
SandwichDecorator(AbstractSandwich)

Tomato Cheese Olive

VeggieSandwich

Components Decorators

Fix: Decorator Pattern
AbstractSandwich

TunaSandwich

SandwichDecorator

Tomato Cheese Olive
VeggieSandwich

Components Decorators

class VeggieSandwich {
double getPrice(){

 return 4;
}

}

class Tomato {
double getPrice(){

 return sandwich.getPrice()
+  3;

}
} Recursive nature

of the decorators

Fix: Decorator Pattern
AbstractSandwich

TunaSandwich

SandwichDecorator

Tomato Cheese Olive
VeggieSandwich

Making a Tuna sandwich with cheese and olives:

AbstractSandwich sammy = new TunaSandwich();
sammy = new Cheese(sammy);
sammy = new Olive(sammy);
System.out.println(sammy.getPrice());

Fix: Decorator Pattern
AbstractSandwich sammy = new TunaSandwich();
sammy = new Cheese(sammy);
sammy = new Olive(sammy);
System.out.println(sammy.getPrice());

TunaSandwich Cheese Olive

sammy

Essentially a linked list of objects of type AbstractSandwich, where a component
(eg TunaSandwich) is the base case. Olive and Cheese were the decorators.

Benefits of the Decorator Pattern

Components Decorators

AbstractSandwich

TunaSandwich

SandwichDecorator

Tomato Cheese Olive

VeggieSandwich

1.  Much simpler design!
2.  Useful when you would like to add features

to a component at runtime

Design Patterns: Behavioral
Behavioral patterns:
Patterns that dictate how
objects communicate and
share data

Popular examples:
●  Visitor

●  Observer

Creational
patterns

Structural
patterns

Behavioral
patterns

Design Patterns References:
There are many more patterns to learn!

Seminal Book:
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Good online references:
http://www.codeproject.com/Articles/430590/Design-
Patterns-of-Creational-Design-Patterns

https://sourcemaking.com/design_patterns

cornell CS PhD

Good rules of thumb for success
"Program testing can at best show the
presence of errors but never their absence."
-  Edsger W. Dijkstra

1.  Think fully before testing!
2.  Document your code and communicate effectively with

your team
3.  Write methods that have a clear, crisp purpose

Thank you!
Have a great summer!

