
3/18/15

1

Recitation 7

Hashing

Sets
Sets

Set<E>
add(E e);
remove(Object o);
contains(Object o);
size()

Set: collection of distinct objects

How to implement a set?

Array List of values?

Have to search through the list
linearly to find the values

Have to shift all values down

VA NY CA

0 1 2 3

Method Runtime

add O(n)

contains O(n)

remove O(n)

Sets

Hashing 101

Hashing — an implementation of a Set
Hashing

Hash
Function

value int

0 1 2 3 4 5

b

Idea: finding an element in an array takes constant time
when you know which index it is stored in

Hashing
Hashing

Hash
Function

VA 5

VA

0 1 2 3 4 5

add(“VA”)

b

Idea: finding an element in an array takes constant time
when you know which index it is stored in

3/18/15

2

Hashing
Hashing

Idea: finding an element in an array takes constant time
when you know which index it is stored in

Hash
Function

NY 3

NY VA

0 1 2 3 4 5

add(“NY”)

b

Load factor: b’s saturation
Hashing

Hash
Function

MA 0

MA NY VA

0 1 2 3 4 5

add(“MA”)

b

Load factor:

We can hash any type of object!
Hashing

class Point {
 int x;
 int y;

int hashCode() {
 return x + y;

}
}

Every object in Java has this
method.

Default behavior is its object’s
memory address.

Remainder Operator!
Hashing

What if hashCode returns an int out of the array’s bounds?

int hashInBounds(Object val) {
 return Math.abs(val.hashCode() % b.length);

}

For all operations, start by hashing to a valid index

Basic set operations with hashing
Hashing

add(val) {
 b[hashInbounds(val)]= val;

}
remove(val) {

 b[hashInbounds(val)]= null;
}
contains(val) {
 return b[hashInbounds(val)]
 != null;
}

Note: these are very
simplified versions!

Operations take time
proportional to hash
function. Constant with
respect to size of the array!

Collisions are a big
problem: 2 vals hash to
same index!

Collision Resolution

3/18/15

3

Problem: Collisions
Collision

Resolution

class Point {
 int x;
 int y;

int hashCode() {
 return x + y;

}
}

Point p1 = new Point(1, 2);
Point p2 = new Point(2, 1);

Hash
Function

p1

Hash
Function

p2

0 1 2 3 4 5

Solution 1: Perfect hash function
Map each value to a different index in the hash table

Impossible in practice
●  don’t know the size of the array
●  Number of possible values far far exceeds the array size
●  no point in a perfect hash function if it takes O(n) to compute

Collision
Resolution

Solution 2: Collision resolution
Two ways of handling collisions:

1.  Chaining 2. Open Addressing

Collision
Resolution

Collisions: Chaining

Chaining example
Collisions:

Chaining

Hash
Function

NY 3

NY VA

0 1 2 3 4 5

add(“NY”)

Chaining example
Hash

Function
CA 3

CA

NY VA

0 1 2 3 4 5

bucket/chain
(linked list)

add(“CA”)

Collisions:
Chaining

3/18/15

4

Chaining example
Hash

Function
CA 3

CA

NY VA

0 1 2 3 4 5

contains(“CA”)

Collisions:
Chaining

true

Requires
linear search

Inner class HashEntry

class HashSet<V> {
 LinkedList<HashEntry<V>>[] b;

 private class HashEntry<V> {
 V value;
 }

} inner class to
store value

Collisions:
Chaining

Set operations
For add, contains, remove always start by finding correct bucket:
●  b[hashInBounds(value)]

add(value)

 1. If bucket already contains value, do nothing
 2. Else add new HashEntry to bucket

contains(value)
 1. If bucket contains value, return true
 2. Else return false

remove(value)
 1. If bucket contains value, remove entry from

list

Collisions:
Chaining

Collisions:
Open Addressing

Open addressing example
Collisions: Open Addressing

Hash
Function

CA 3

NY CA VA

0 1 2 3 4 5

probing: Find another
available space

add(“CA”)

Open addressing example

Hash
Function

MA 3

MA NY CA VA

0 1 2 3 4 5

add(“MA”)

Collisions: Open Addressing

3/18/15

5

Open addressing example

How far do we search?
Once we reach an
empty (null) cell, we
know it’s not there. Hash

Function
SC 3

MA NY CA VA

0 1 2 3 4 5

contains(“SC”)

Collisions: Open Addressing

Finding where a key belongs

int getPosition(val) {
int i = hashInBounds(val);
while (b[i] != null && !val.equals(b[i].val)) {

i = (i+1) % b.length;
}
return i;

}

Keep searching until
we hit null or we find
the value in question

linear probing - searching the
array in order: i, i+1, i+2, i+3 . . .

Collisions: Open Addressing

Efficiency of linear probing

Average number of probes

(under certain independence assumptions about the hash function)

Array half full? add(value) expected to need only 2 probes! Wow!

Beats linear search!

Deleting elements

What happens if we
remove VA and then try
to lookup MA?

Hash
Function

MA 3

MA NY CA

0 1 2 3 4 5

contains(“MA”)

Collisions: Open Addressing

false

Deleting elements

Solution: The VA
entry is still there, but
marked as removed

Hash
Function

MA 3

MA NY CA VA

0 1 2 3 4 5

contains(“MA”)

Collisions: Open Addressing

true

Deleting elements

class HashSet<V> {
 HashEntry<V>[] b;

 private class HashEntry<V> {
 V value;
 boolean isInSet= true;
 }

}
Set isInSet to
false to remove it

Collisions: Open Addressing

3/18/15

6

Set operations
For add, contains, remove, always start by finding correct index
using probing: pos = getPosition(key)

add(value)

 1. If b[pos] is null, add new HashEntry at pos
 2. Else mark isInSet as true

contains(value)
 1. Return b[pos] != null && b[pos].isInSet

remove(value)
 1. If b[pos] is not null and isInSet is true,
 mark isInSet as false

Collisions: Open Addressing

Linear vs quadratic probing

linear probing:
search the array in
order:
i, i+1, i+2, i+3 . . .

When a collision occurs, how do we search for an empty space?

quadratic probing:
search the array in
nonlinear sequence:
i, i+12, i+22, i+32 . . .

clustering:
problem where nearby
hashes have very similar
probe sequence so we
get more collisions

Collisions: Open Addressing

Collision resolution summary

Open Addressing
●  store all entries in table
●  use linear or quadratic probing

to place items
●  uses less memory
●  clustering can be a problem -

need to be more careful with
choice of hash function

Chaining
●  store entries in separate

chains (linked lists)
●  can have higher load

factor/degrades gracefully
as load factor increases

Collisions

Rehashing

Resizing
Rehashing

What happens as the array becomes too full?
i.e. load factor gets a lot bigger than ½?
 O(1) → O(n) operations

Solution: Dynamic resizing
●  reinsert / rehash all elements to an array

 double the size.
●  Now is the time where we remove the

entries where !b[pos].isInSet
●  Why not simply copy into first half?

Load factor
Rehashing

Load factor

Rehashing happens when λ reaches load factor threshold

0 1

waste of memory too slow

best range

3/18/15

7

Big O!

Runtime analysis
Big O of Hashing

Chaining Open Addressing

Expected
O(hash function)
+  O(load factor)

O(hash function)

Worst
O(n)

(all elements in one
bucket)

O(n)
(array almost full)

+

Amortized runtime
Big O of Hashing

Insert n items: n + 2n (from copying) = 3n inserts → O(3n) → O(n)
Amortized to constant time per insert

Copying Work

Everything has just been copied n inserts

Half were copied in previous doubling n/2 inserts

Half of those were copied in doubling
before previous one

n/4 inserts

... ...

Total work n + n/2 + n/4 + … ≤ 2n

Hash Functions

Requirements
Hash Functions

Hash functions MUST:
●  have the same hash for two equal objects

○  In Java: if a.equals(b), then
a.hashCode() == b.hashCode()

○  if you override equals and plan on using object in a HashMap
or HashSet, override hashCode too!

●  be deterministic

○  calling hashCode on the same object should return the same
integer
■  important to have immutable values if you override equals!

Good hash functions

●  As often as possible, if !a.equals(b), then a.hashCode() !=
b.hashCode()
○  this helps avoid collisions and clustering

●  Good distribution of hash values across all possible keys
●  FAST. add, contains, and remove are proportional to

speed of hash function

A bad hash function won’t break a hash set but it could
seriously slow it down

Hash Functions

3/18/15

8

String.hashCode()

Don’t hash very long strings, not O(1) but O(length of string)!

/** Returns a hash code for this string.
 * Computes it as
 * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
 * using int arithmetic.
 */
public int hashCode() { ... }

Hash Functions

Designing good hash functions

class Thingy {
 private String s1, s2;

 public boolean equals(Object obj) {
 return s1.equals(obj.s1)

 && s2.equals(obj.s2);
 }

public int hashCode() {
 return 37 * s1.hashCode() + 97 * s2.hashCode();

}
}

Hash Functions

Limitations of hash sets

1.  Due to rehashing, adding elements will sometimes take O(n)
a.  not always ideal for time-critical applications

2.  No ordering among elements, very slow to find nearby elements

Alternatives (out of scope of the course):
1.  hash set with incremental resizing prevents O(n) rehashing

2.  self-balancing binary search trees are worst case O(log n) and

keep the elements ordered

Hash Functions

Hashing Extras

Hashing has wide applications in areas such as security
●  cryptographic hash functions are ones that are very hard

to invert (figure out original data from hash code),
changing the data almost always changes the hash, and
two objects almost always have different hashes

●  md5 hash: `md5 filename` in Terminal

Hash Functions

