
3/2/15

1

Recitation 5

Loop Invariants and Prelim Review

Four loopy questions
Loop Invariants

 //Precondition

Initialization;
 // invariant: P
 while (B) { S }

1. Does it start right?
Does initialization make
invariant P true?

2. Does it stop right?
Does P and !B imply
the desired result?

3. Does repetend S make
progress toward
termination?

4. Does repetend S
keep invariant P true?

Add elements backwards
Loop Invariants

??? b

 ??? b s = sum

h

 b s = sum

h

Precondition

Invariant

Postcondition

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = b.length-1;
while (h >= 0) {

 s= s + b[h];
}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = b.length-1;
while (h > 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = b.length-1;
while (h >= 0) {

 s= s + b[h];
 h = h - 2;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

3/2/15

2

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = 0;
while (h >= 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = b.length-1;
while (h >= 0) {

 s= s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

Linear search time

Linear search for v in an array b of length n

worst-case time. v is not in b[0..n-1], so linear search has to look
at every element. Takes time proportional to n.

expected (average) case time. If you look at all possibilities where
v could be and average the number of elements linear search has
to look at, you would get close to n/2. Still time proportional to n.

Prelim Review

 ??? b

0 n

Binary search time (b[0..n-1] is sorted)
h= -1; t= n;
// invariant: P (below)
while (h < t-1) {
 int e= (h+t)/2;
 if (b[e] <= v) h= e;
 else t= e;
}
// b[0..h] <= v < b[t..n-1]

Prelim Review

 <= v ? > v inv P: b

0 n h t

b[h+1..t-1] starts out with n
elements in it.

Each iteration cuts size of
b[h+1..t-1] in half.

worst-case and expected
case time: log n

Insertion sort of b[0..n-1]

h= 0;
// invariant: P (below)
while (h < n) {
 Push b[h] down into
 its sorted position
 in b[0..h];
 h= h+1;
}

Prelim Review

 sorted ? inv P: b

0 n h

Worst-case time for Push: h swaps

Average case time for Push: h/2 swaps

1 + 2 + 3 + … + n-1 = n (n-1) / 2

Worst-case and average case time:
proportional to n^2

Selection sort of b[0..n-1]

h= 0;
// invariant: P (below)
while (h < n) {
 Swap b[h] with min
 value in b[h..n-1];
 h= h+1;
}

Prelim Review

 sorted ? inv P: b

0 n h

To find the min value of b[h..n-1] takes
time proportional to n - h.

n + (n-1) + … + 3 + 2 + 1 = n (n-1) / 2

Worst-case and average case time:
proportional to n^2

3/2/15

3

Quicksort of b[0..n-1]
Prelim Review

partition(b, h, k) takes time proportional to
size of b[h..k]

Best-case time: partition makes both sides
equal length

time n to partition

time n to partition

time n to partition

depth: proportional to log n therefore: time n log n

Quicksort of b[0..n-1]

/** Sort b[h..k] */
void QS(int[] b, int h, int k) {
 if (b[h..k] size < 2)
 return;
 j= partition(b, h, k);
 // b[h..j-1] <= b[j] <= b[j+1..k]
 QS(h, j-1);
 QS(j+1, k)
}

Prelim Review

Someone proved that the
average or expected time
for quicksort is n log n

Quicksort of b[0..n-1]
Prelim Review

partition(b, h, k) takes time proportional to size of b[h..k]

Worst-case time: partition makes one side empty

time n to partition

depth: proportional to n therefore: time n^2

time n-1 to partition

time n-2 to partition

Exception handling
 private static double m(int x) {
 int y = x;
 try {
 y = 5/x;
 return 5/(x+2);
 } catch (NullPointerException e) {

 System.out.println("null");
 } catch (RuntimeException e) {
 y = 5/(x+1);
 }
 return 1/x;
 }

Prelim Review

What method calls are legal
Animal an; … an.m(args);

legal ONLY if Java can guarantee that
method m exists. How to guarantee?

Prelim Review

The … is computation.
stores something in an.

m must be declared in Animal or inherited. Why?

Someone might write a subclass C of Animal that does
not have m declared in it, create an object of C,
store it in an. Then method m would not exist

You know already from lecture 4 on class Object,
overriding toString(), and the bottom-up/overriding
rule that the overriding method is called

Quicksort
Prelim Review

3 1 4 7 5 6 2 0

1 0 2 3 6 5 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 7 4

0 1 2 3 6 5 7 4

pivot

3/2/15

4

Quicksort
Prelim Review

0 1 2 3 5 4 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

