
Recitation 4

Abstract classes, Interfaces

A Little More Geometry!
Abstract Classes

Shape
 x ____
 y ____

Triangle
 area()
 base____
 height ____

Circle
 area()
 radius ____

Square
 area()
 size ____

Demo 1: Complete this function

/** Return the sum of the areas of

 * the shapes in s */

static double sumAreas(Shape[] s) { }

1. Operator instanceof and casting are required
2. Adding new Shape subclasses breaks sumAreas

Abstract Classes

A Partial Solution:

Add method area to class Shape:

Abstract Classes

public double area() {
return 0;

}

public double area() {
throw new RuntimeException(“area not overridden”);

}

Problems not solved

1. What is a Shape that isn’t a Circle, Square, Triangle,
etc? What is only a shape, nothing more specific?
a. Shape s = new Shape(...); Should be

disallowed

Abstract Classes

2. What if a subclass doesn’t override area()?
a. Can’t force the subclass to override it!
b. Incorrect value returned or exception thrown.

Solution: Abstract classes

public abstract class Shape {

public double area() {
return 0;

}

}

Abstract Classes

Abstract class
Can’t be instantiated.
(new Shape() illegal)

Solution: Abstract methods

public abstract class Shape {

public abstract double area();

}

Abstract Classes

Abstract method
Subclass must
override.

● Can have
implemented
methods, too

● Place abstract
method only in
abstract class.

● Semicolon
instead of body.

Demo 2: A better solution

We modify class Shape to be abstract and make area() an
abstract method.

● Abstract class prevents instantiation of class Shape
● Abstract method forces all subclasses to override area()

Abstract Classes

Abstract Classes, Abstract Methods

1. Cannot instantiate an object of an abstract class.
 (Cannot use new-expression)

2. A subclass must override abstract methods.

Abstract Classes

Interfaces

Problem

Mammal

Human ParrotDog

Whistler

Interfaces

Bird

Animal
Where is the best place to
implement whistle()?

No multiple inheritance in Java!

class Whistler {
void breathe() { … }

}

class Animal {
void breathe() { … }

}

class Human extends Animal, Whistler {
}

Interfaces

Which breathe() should
java run in class Human?

new Human().breathe();

Why not make it fully abstract?

class abstract Whistler {
abstract void breathe();

}

class abstract Animal {
abstract void breathe();

}

class Human extends Animal, Whistler {
}

Interfaces

Java doesn’t allow this,
even though it would
work. Instead, Java has
another construct for this
purpose, the interface

Solution: Interfaces

public interface Whistler {
void whistle();
int MEANING_OF_LIFE= 42;

}

class Human extends Mammal implements Whistler {
}

Interfaces

Must implement all methods in the
implemented interfaces

● methods are automatically
public and abstract

● fields are automatically
public, static, and
final (i.e. constants)

Multiple interfaces

public interface Singer {
void singTo(Human h);

}

class Human extends Mammal implements Whistler, Singer {

}

Interfaces

Classes can implement several
interfaces! They must implement
all the methods in those interfaces
they implement.

Must implement singTo(Human h)
and whistle()

Solution: Interfaces

Mammal

Human ParrotDog

Whistler

Interfaces

Bird

Animal
Interface Whistler offers
promised functionality to
classes Human and Parrot!

Casting to an interface
Human h = new Human();
Object o = (Object) h;

Animal a = (Animal) h;

Mammal m = (Mammal) h;

Singer s = (Singer) h;

Whistler w = (Whistler) h;

All point to the same memory address!

Interfaces

Singer

Human

Mammal

Animal

Object

Whistler

Casting to an interface
Human h = new Human();
Object o = h;

Animal a = h;

Mammal m = h;

Singer s = h;

Whistler w = h;

Interfaces

Singer

Human

Mammal

Animal

Object

Whistler

Automatic
up-cast

Forced
down-cast

Casting up to an interface automatically
class Human … implements Whistler {

void listenTo(Whistler w) {...}
}

Human h = new Human(...);

Human h1= new Human(...);

h.listenTo(h1);

Interfaces

Human

Mammal

Animal

Object

Whistler
Arg h1 of the call has type Human. Its value is
being stored in w, which is of type Whistler.
Java does an upward cast automatically. It
costs no time; it is just a matter of perception.

Demo 3: Implement Comparable<T>
Implement interface Comparable in class Shape:
public interface Comparable<T> {

 /** = a negative integer if this object < c,
 = 0 if this object = c,
 = a positive integer if this object > c.
 Throw a ClassCastException if c cannot
 be cast to the class of this object. */

int compareTo(T c);
}

Interfaces

Shape implements Comparable<T>

public class Shape implements Comparable<Shape> {
 ...
 /** … */
 public int compareTo(Shape s) {
 double diff= area() - s.area();
 return (diff == 0 ? 0 : (diff < 0 ? -1 : +1));
 }
}

Interfaces

Beauty of interfaces

Arrays.sort sorts an array of any class C, as long as C implements
interface Comparable<T> without needing to know any
implementation details of the class.

Classes that implement Comparable:
Boolean Byte Double Integer
String BigDecimal BigInteger Calendar
Time Timestamp and 100 others

Interfaces

String sorting
Arrays.sort(Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

String implements Comparable, so you can write
 String[] strings= ...; ...
 Arrays.sort(strings);

During the sorting, when comparing
elements, a String’s compareTo
function is used

Interfaces

And Shape sorting, too!
Arrays.sort(Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

Shape implements Comparable, so you can write
 Shape[] shapes= ...; ...
 Arrays.sort(shapes);

During the sorting, when comparing
elements, a Shape’s compareTo
function is used

Interfaces

Abstract Classes vs. Interfaces
● Abstract class represents

something
● Sharing common code

between subclasses

● Interface is what something
can do

● A contract to fulfill
● Software Engineering

purpose

Similarities:
● Can’t instantiate
● Must implement abstract methods
● Later we’ll use interfaces to define “abstract data types”

○ (e.g. List, Set, Stack, Queue, etc)

