Recitation 4

Abstract classes, Interfaces

A Little More Geometry!

Shape

) —

Abstract Classes

el

Square
area()
size

Triangle
area()
base
height

Circle
area()
radius

Demo 1: Complete this function

/** Return the sum of the areas of
* the shapes in s */

static double sumAreas (Shapel[] s) { }

1. Operator instanceof and casting are required
2. Adding new Shape subclasses breaks sumAreas

A Partial Solution:

Add method area to class Shape:

public double area() {
return 0O;

}

public double area () {
throw new RuntimeException (“area not overridden”);

}

Problems not solved

1. What is a Shape that isn’t a Circle, Square, Triangle,
etc? What is only a shape, nothing more specific?
a. Shape s = new Shape(...); Should be
disallowed

2. What if a subclass doesn’t override area()?
a. Can't force the subclass to override it!
b. Incorrect value returned or exception thrown.

Solution: Abstract classes

Abstract class

Can’t be instantiated.
(new Shape () illegal)

public abstract class Shape {

public double area ()

return 0O;

Solution: Abstract methods

public abstract class Shape {

public abstract double area();

} \ Abstract method e

Subclass must
override.

Can have
implemented
methods, too

Place abstract
method only in
abstract class.

Semicolon
instead of body.

Demo 2: A better solution

We modify class Shape to be abstract and make area () an
abstract method.

e Abstract class prevents instantiation of class Shape
e Abstract method forces all subclasses to override area ()

Abstract Classes, Abstract Methods

1. Cannot instantiate an object of an abstract class.

(Cannot use new-expression)

2. A subclass must override abstract methods.

Interfaces

Problem

Where is the best place to
implement whistle () ?

Whistler

Animal

—

Mammal

Bird

Human

Dog

Parrot

Interfaces

No multiple inheritance in Javal!

class Whistler {

void breathe () { .. } new Human () .breathe () ;
} Which breathe() should
class Animal { java run in class Human?

void breathe () { .. }

}
class Human extends AnMstler {
}

Why not make it fully abstract?

class abstract Whistler {

abstract void breathe (); Javadoesn'tallow this,
even though it would

} work. Instead, Java has
class abstract Animal { another construct for this

abstract void breathe(); PP the interface

J

class Human extends AnMstler {
}

Solution: Interfaces

public interface Whistler { e methods are automatically

void whistle () ; public and abstract

int MEANING OF LIFE= 4Z; e fields are automatically
) public, static, and
final (i.e. constants)

class Human extends Mammal implements Whistler {

}
Must implement all methods in the

implemented interfaces

Multiple interfaces

public interface Singer { Classes canimplement several
interfaces! They must implement

all the methods in those interfaces
} they implement.

void singTo (Human h) ;

class Human extends Mammal implements Whistler, Singer {

} \
Must implement singTo (Human h)

and whistle ()

Solution: Interfaces

Interface whistler offers
promised functionality to
classes Human and Parrot!

Whistler

Animal

A

Mammal

Bird

Human

Dog

Parrot

Interfaces

Interfaces

Casting to an interface

Human h = new Human() ; _
| | Object
Object o = (Object) h; ‘
Animal a = (Animal) h; _
Mammal m = (Mammal) h; Amrml
Singer s = (Singer) h; Whistler Mammal Singer

Whistler w = (Whistler) h; \\\\ ‘ ////
Human

All point to the same memory address!

Casting to an interface

Human h
Object o
Animal a
Mammal m
Singer s
Whistler

new Human () ;

SRS e N

°
14

°
14

e

Automatic
up-cast

Forced
down-cast

Object

Animal

Whistler Mammal Singer

N

Casting up to an interface automatically

class Human .. implements Whistler ({
void listenTo (Whistler w) {...} Object

| |

Human h = new Human(...); :
Animal
Human hl= new Human(...):; ‘

h.listenTo (hl);
Whistler Mammal

Arg h1 of the call has type Human. Its value is ‘
being stored in w, which is of type Whistler. \

Java does an upward cast automatically. It
costs no time; it is just a matter of perception.

Human

Interfaces

Demo 3: Implement Comparable<T>

Implement interface Comparable in class Shape:
public interface Comparable<T> {

/** = a negative integer if this object < ¢,
= 0 1f this object = ¢,
= a positive integer 1f this object > c.
Throw a ClassCastException 1f ¢ cannot
be cast to the class of this object. */

int compareTo (T c);

Interfaces

Shape implements Comparable<T>

public class Shape implements Comparable<Shape> {

/** */
public int compareTo (Shape s) {
double diff= area() - s.areal();
return (diff == 0 ? 0 : (diff < 0 2?2 -1 : +1));

Beauty of interfaces

Arrays.sort sorts an array of any class C, as long as C implements
interface Comparable<T> without needing to know any
implementation details of the class.

Classes that implement Comparable:

Boolean Byte Double Integer
String BigDecimal BigInteger Calendar
Time Timestamp and 100 others

String sorting

Arrays.sort (Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

String implements Comparable, SO you can write
String[] strings= ...;
Arrays.sort (strings) ;

\ During the sorting, when comparing
elements, a String’s compareTo

function is used

And Shape sorting, too!

Arrays.sort (Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

Shape implements Comparable, SO you can write
Shape[] shapes= ...;
Arrays.sort (shapes) ;

\ During the sorting, when comparing

elements, a Shape’s compareTo
function is used

Abstract Classes vs. Interfaces

e Interface is what something
can do

e A contract to fulfill

e Software Engineering
purpose

e Abstract class represents
something

e Sharing common code
between subclasses

Similarities:

e Can't instantiate

e Must implement abstract methods

e Later we'll use interfaces to define “abstract data types”
o (e.g. List, Set, Stack, Queue, etc)

