
CS	
  2110	
   Object-­‐Oriented	
  Programming	
  and	
  Data	
  Structures	
   Spring	
  2015	
  

Course: CS 2110 —also ENGRD 2210 (engineers gen-
erally sign up for ENGRD 2210) 

Course website: 
http://www.cs.cornell.edu/courses/CS2110/2015sp/ 

Instructors: David Gries and Siddhartha Chaudhuri 

CS 2111: A 1-credit S/U course designed to help stu-
dents who want more contact hours. Only for students in 
CS2110. It gives more explanation of core ideas in Java, 
programming, data structures, assignments, etc., and 
provides more opportunities to ask questions. Require-
ment: Attend one 1-hour session each week. We rec-
ommend it! 

Academic Excellence Workshop (AEW): A 1-credit 
S/U course for students in CS2110 in which students 
work together in a cooperative 2-hour session each 
week. Requirement: Attend weekly 2-hour session. For 
info, visit Olin 167 or this website: 
www.engineering.cornell.edu/academics/undergraduate/
curriculum/courses/workshops/index.cfm. 

CS 2110 Description. Intermediate programming in a 
high-level language and introduction to computer sci-
ence. Topics include program structure and organiza-
tion, object-oriented programming (classes, objects, 
types, sub-typing), graphical user interfaces, algorithm 
analysis (asymptotic complexity, big “O” notation), 
recursion, data structures (lists, trees, stacks, queues, 
heaps, search trees, hash tables, graphs), simple graph 
algorithms. Java is the principal programming language. 

Course outcomes 

1: Be fluent in the use of recursion and object-
oriented programming concepts (e.g. classes, objects, 
inheritance, and interfaces). 

2: Be able to design and implement nontrivial Java 
programs (roughly 1000 lines of code), starting from 
an English language specification. 

3: Be able to design graphical user interfaces. 

4: Understand asymptotic complexity of algorithms 
and be able to analyze programs to determine their 
running times. 

5: Understand basic data structures. 

Prerequisite: CS 1110 or CS 1112 or an equivalent 
course that provides a solid introduction to a procedural 
programming language —see the back of this page. 
Knowledge of object-oriented programming is not a 
prerequisite. 

Lectures: Tues/Thurs 10:10–11:10, Statler Auditorium. 
Attendance required. 

Sections: Sign up for one 1-hour section. Attend every 
week. Sections teach new material, review material, 

give help on assignments, etc. No permission needed to 
switch sections, but register for the one you attend regu-
larly. Some sections given at the same time are unbal-
anced with regard to enrollment. Please move to a dif-
ferent section to balance the load, if you can. 

Coursework and grades: Visit the course page 
http://www.cs.cornell.edu/Courses/cs2110/2015sp/cours
einfo.html for an extensive discussion of grades in this 
course. 

Programming Assignments: Come in two flavors: 

• Vanilla: specific experience to learn and practice 
what’s being taught. We tell you exactly what to do 

• Chocolate: more open-ended project, in which you 
get to do design, etc. 

For the chocolate assignments, we will leave varying 
parts of the design to you —it’s more fun but more chal-
lenging, because you get to make design decisions. 

CS 2111 (see below) will offer extra help and guidance 
on assignments. 

Course CMS: The system used to submit assignments, 
record grades, etc. URL is on course website. Don’t 
look at it now –wait until we tell you when it has been 
populated with students. 

Piazza: The website we use to communicate questions, 
answers, etc. We hope you will use it a lot, both asking 
questions and answering questions that other students 
ask. URL is on course website. 

Exams: The two prelims and the final are given at the 
times shown below. Put them on your calendar now. 
Makeups are generally not allowed except in really ex-
ceptional circumstances. If you are out of town, ar-
rangements may be made for you to take it while out of 
town. For more information, visit the course website, 
click on Course Info, and click on Policies. 

Prelim 1: Tues, 10 March 7:30-9:30PM or 5:30-7:00PM 
Prelim 2: Tues, 21 April 7:30-9:30PM or 5:30-7:00PM 
Final:       TBA 

Textbook: “Data Structures and Abstractions with Ja-
va”, Prentice Hall, 3rd OR 2nd edition. There is a new 
edition this fall, but you can make do with an older one. 
Copies on reserve in Engineering Library. You may not 
need your own copy; share with others. 

Lecture slides: We generally make the slides available 
on the course website (click Lecture Notes) a day or two 
before a lecture. When a pdf version appears, you may 
assume it’s the final version. It will help you to down-
load them at least the day before the lecture, scan 
through them to get an idea what the lecture is about, 
and bring a copy to class (paper, on laptop, on tablet, 
whatever). 



CS	
  2110	
   Object-­‐Oriented	
  Programming	
  and	
  Data	
  Structures	
   Spring	
  2015	
  

VideoNote: Lectures were recorded last spring. They 
appear here: http://www.videonote.com/cornell. Our 
lectures will be different and have a different ordering, 
but if you miss a lecture, you may find this useful.  

Java-OO-Summary. Extensive ppt slides (75-80 of 
them), which provide a summary of OO concepts in 
Java. Has a 2-page index at the beginning. Available 
from the course website on the Resources page. 

Java: You need Java on your computer. If necessary, 
download and install it using instructions on the “Re-
sources” page of the course website. 

Eclipse: A free IDE (Integrated Development Environ-
ment) that we use to write, debug, and run programs. 
The “Resources” page on the course website has in-
structions for downloading and installing it. 

DrJava: A free and extremely basic IDE, which we 
sometimes use to demo things easily. You can use it to 
try various things, but do not use it for assignments. 
Download from http://www.drjava.org. 

codingbat.com. A website where you can practice writ-
ing small Java segment and see results immediately. 
Practice Boolean expressions, strings, arrays, recursion, 
etc. See the course website on Resources page. 

Academic Integrity: On any programming assignment, 
never look at or be in possession of the code of another 
group, in this semester or a previous one. Do not show 
or give your code to another student. Do not post code 
on the Piazza.  

Naturally, you may discuss assignments with others, but 
the discussion should not extend to writing actual code, 
picking variable names, agreeing on specifications or 
comments, etc. 

Programming Proficiency 

A student entering CS 2110 should be able to easily 
write simple programs in some programming language. 
They should have fluency with strings, arrays, two-
dimensional arrays, simple conditional tests, loops, and 
functions and procedures as well as calls on them. 

Here are a few examples of the sorts of programs you 
should be able to easily write. To test yourself, consider 
launching the editor you used when you learned to pro-
gram and actually write, test, and debug these little 
problems. 

1. Write a function that returns true if its string parame-
ter is a palindrome (and false otherwise). A palindrome 
is a string that reads the same backwards or forwards, 
e.g. "Madam, I'm Adam." Actually, this string would 
fail the test because it contains white space and punctua-
tion. With parameter "madamimadam", the function 
would return true. 

2. Write a function that returns its string parameter but 
with punctuation and spaces removed and letters turned 
into lower case. Now if you call your function from 
problem 1 with the output of this new function, "Mad-
am, I'm Adam." would pass the test. 

Ideally, use some existing string function in the lan-
guage you are familiar with to test for white space and 
punctuation and to map upper case to lower. No need to 
reinvent the wheel. 

In CS 2110 we prefer to use the provided language fea-
tures, including prebuilt library methods, to full effect. 
The best programmers are the ones who are most effec-
tive in using the tools available to them: they write less 
code, and their code is more expressive and more exact, 
so they make fewer mistakes. 

3. Compute the median of a one-dimensional array x 
containing integers, or count the number of zeros in x 
(each of these actions would be a separate method, re-
turning an integer value). Compute the mean as a float-
ing point number. 

4. Given integers b and c, where 0 < c, compute b/c as 
an integer (rounded to the nearest integer). 

5. Count the number of zeroes in a rectangular matrix y. 
For a square array square, determine whether all the 
diagonal elements have the same value. 

6. Define the "balance" of a rectangular matrix y to be 
the number of elements larger than the mean value 
(rounded to an integer using the method of question 4) 
minus the number of elements smaller than the mean. 
Given an integer matrix, compute its mean and balance. 

7. (Binary search). Given a sorted integer array segment 
b[h..k] and an integer x, find the position j such that 
b[h..j-1] ≤ x and b[j..k] > x. (by b[h..j-1] ≤ x, we mean 
that all values of b[h..j-1] are ≤ x). Your program should 
run in time proportional to the logarithm of k+1-h. (Did 
you have binary search in your previous course? If so, 
this should be easy. If not, don’t worry; we will teach it 
to you.) 


