
���1CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

CS2110 Spring 2015 Assignment A1  
PhD Genealogy

Introduction

Website http://genealogy.math.ndsu.nodak.edu contains the PhD genealogy of about 185,578 mathematicians
and computer scientists, showing their PhD advisors and advisees. There, Gries can trace his intellectual ancestry
back to Gottfried Wilhelm Leibniz (1646–1716), who dreamed of a “general method in which all truths of the rea-
son would be reduced to a kind of calculation”. Leibniz foresaw symbol manipulation as we know it today. Chaud-
huri traces his back to Otto Mencke, who, together with Leibniz co-founded Acta Eruditorum, the first academic
journal in Germany.

It’s a laborious, error-prone task to search the genealogy website by hand and construct a tree of someone’s PhD
ancestors. So, we wrote a Java program to construct the tree for a given person. It uses a class PhD much like the
one you will build, but it has many more fields because of the complexity of the information on that website. The
program also uses a class that allows one to read a web page. At the appropriate time, we will show you this pro-
gram and discuss its construction, so you can learn how to write programs that crawl webpages.

The intellectual genealogies of Gries and Chaudhuri can be found on the assignments page of the course website.
Gries has 256 distinct ancestor’s going back to the year 1315 and including Copernicus. Chaudhuri has 200. They
share some ancestors, including Carl Friedrich Gauss.

Your task in this assignment is to develop a Java class PhD that will maintain information about the PhD of a
person, giving the date and advisor(s), and a JUnit class PhDTester to maintain a suite of test cases for class
PhD. Note that the term PhD is not used in all countries! Chaudhuri has a PhD, but Gries’s degree is a Dr. Rerum
Natura from MIT (Munich Institute of Technology). But, in this assignment, we use only the term PhD.

Learning objectives
• Gain familiarity with the structure of a class within a record-keeping scenario (a common type of application)
• Learn about and practice reading carefully.
• Work with examples of good Javadoc specifications to serve as models for your later code.
• Learn the code presentation conventions for this course (Javadoc specifications, indentation, short lines, etc.),

which help make your programs readable and understandable.
• Learn and practice incremental coding, a sound programming methodology that interleaves coding and testing.
• Learn about and practice thorough testing of a program using JUnit testing.
• Learn to write class invariants.
• Learn about preconditions of a method (requirements of a call on the method that need not be tested) and the

use of the Java assert statement for checking preconditions.

The methods to be written are short and simple; the emphasis in this assignment is on “good practices”, not
complicated computations.

Reading carefully

At the end of this document is a checklist of items for you to consider before submitting A1, showing how many
points each item is worth. Check each item carefully. A low grade is almost always due to lack of attention to detail
and to not following instructions —and not to difficulty understanding OO. At this point, we ask you to visit the
webpage on the website of Fernando Pereira, research director for Google:

http://earningmyturns.blogspot.com/2010/12/reading-for-programmers.html

Did you read that webpage carefully? If not, read it now! The best thing you can do for yourself —and us— at this
point is to read carefully. This handout contains many details. Save yourself and us a lot of anguish by reading care-
fully as you do this assignment.

http://genealogy.math.ndsu.nodak.edu
http://earningmyturns.blogspot.com/2010/12/reading-for-programmers.html

���2CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

Collaboration policy

You may do this assignment with one other person. If you are going to work together, then, as soon as possible
—and certainly before you submit the assignment— get on the CMS for the course and do what is required to form a
group. Both people must do something before the group is formed: one proposes, the other accepts. If you need help
with the CMS, visit www.cs.cornell.edu/Projects/CMS/userdoc/.

If you do this assignment with another person, you must work together. It is against the rules for one person to
do some programming on this assignment without the other person sitting nearby and helping. You should take turns
“driving” —using the keyboard and mouse.

With the exception of your CMS-registered partner, you may not look at anyone else's code, in any form, or
show your code to anyone else, in any form. You may not show or give your code to another person in the class.
While you can talk to others, your discussions should not include writing code and copying it down.

Getting help

If you don't know where to start, if you don't understand testing, if you are lost, etc., please SEE SOMEONE
IMMEDIATELY —a course instructor, a TA, a consultant. Do not wait. A little in-person help can do wonders.

Using the Java assert statement to test preconditions

A precondition is a constraint on the parameters of a method, and it is up to the user to ensure that method calls
satisfy the precondition. If a call does not, the method can do whatever it wants.

However, especially during testing and debugging, it is useful to use Java assert statements at the beginning of a
method to check that the precondition is true. For example, if the precondition is “this person’s name is at least one
character long”, one can use an assert statement like the following (using obvious the name for the field):

assert name != null && name.length() >= 1;

The additional test name != null is there to protect against a null-pointer exception, which will happen if the
argument corresponding to name in the call is null. [This is important!]

In this assignment, all preconditions of methods must be checked using assert statements at the beginning of the
method. Write the assert statements as the first step in writing the method body, so that they are always there during
testing and debugging. Also, when you generate a new JUnit class, make sure the VM argument -ea is present in the
Run Configuration. You will find assert statements helpful in testing and debugging.

How to do this assignment

Scan the whole assignment before starting. Then, develop class PhD and test it using class PhDTester in the
following incremental, sound way. This methodology will help you complete this (and other) programming tasks
quickly and efficiently. If we detect that you did not develop it this way, points will be deducted.

1. In Eclipse, create a new project, called a1PhD. In a1PhD, create a new class, called PhD. It should not be in a
package, and it does not need a method main (but you may add one if you want). Insert the following as the first
line of file PhD.java:

/** An instance maintains info about the PhD of a person. */

Remove the constructor with no parameters, since it will not be used and its use can leave an object in an incon-
sistent state (see below, the class invariant).

2. In class PhD, declare the following fields (you choose the names of the fields), which are meant to hold informa-
tion describing a person with a PhD. Make these fields private and properly comment them (see the "The class
invariant" section below).

http://www.cs.cornell.edu/Projects/CMS/userdoc/

���3CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

Note: you must break long lines (including comments) into two or more lines so that the reader does not have to
scroll right to read them. This makes your code much easier for us and you to read. A good guideline: No line is
more than 80 characters long.

‣ name (a String). Name of the person with a PhD, a String of length > 0.
‣ year PhD was awarded (an int).
‣ month PhD was awarded (an int). In range 1..12 with 1 being January, etc.
‣ gender of the person (a char). 'M' means male and 'F' means female.
‣ first advisor of this person (of type PhD). The first PhD advisor of this person —null if unknown.
‣ second advisor of this person (of type PhD). The second advisor of this person —null if unknown or if the

person had only one advisor. If the first-advisor field is null, the second advisor field must be null.
‣ number of PhD advisees of this person.

About the field that contains the number of advisees: The user never gives a value for this field; it is com-
pletely under control of the program. For example, whenever a PhD p is given an advisor m, m’s number of ad-
visees must be increased by 1. It is up to the program, not the user, to increase the field.

The class invariant. Recall that comments should accompany the declarations of all fields to describe what each
field means, what constraints hold on the fields, and what the legal values are for the fields. For example, for the
name-of-the person field, state in a comment that the field contains the person’s name and must be a string of at
least 1 character. The collection of the comments on these fields is called the class invariant. Here is an example
of a declaration with a suitable comment. Note that the comment does not give the type (since it is obvious from
the declaration), it does not use noise phrases like “this field contains …”, and it does contain constraints on the
field.

int month; // month the PhD was awarded. In range 1..12, with 1 meaning January, etc.

Note again that we did not put “(an int)” in the comment. That information is already known from the decla-
ration. Don’t put such unnecessary things in the comments.

Whenever you write a method (see below), look through the class invariant and convince yourself that the
class invariant still holds when the method terminates. This habit will help you prevent or catch bugs later on.

3. In Eclipse, start a new JUnit test class and call it PhDTester. You can do this using menu item File —> New
—> JUnit Test Case (add the JUnt 4 library, if asked).

4. Below, we describe four groups A, B, C, and D of methods. Work with one group at a time, performing steps
(1)..(4). Do not go on to the next group until the group you are working on is thoroughly tested and cor-
rect.

(1) Write the Javadoc specifications for each method in that part. Make sure they are complete and correct —
look at the specs we give you below. Copy-and-paste from this handout makes this easy.

(2) Write the method bodies, starting with assert statements for the preconditions.

(3) Write one test procedure for this group in class PhDTester and add test cases to it for all the methods in
the group.

(4) Test the methods in the group thoroughly.

Discussion of the groups of methods. The descriptions below represent the level of completeness and precision
required in Javadoc specification-comments. In fact, you may (should) copy and paste these descriptions to create
the first draft of your Javadoc comments. If you do not cut and paste, adhere to the conventions we use, such as
using the prefix “Constructor: …” and double-quotes to enclose an English boolean assertion. Using a consistent
set of good conventions in this class will help us all.

���4CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

Method specifications do not mention fields because the user may not know what the fields are, or even if there
are fields. The fields are private. Consider class JFrame: you know what methods it has but not what fields, and
the method specifications do not mention fields. In the same way, a user of your class PhD will know the methods
but not the fields.

The names of your methods must match those listed below exactly, including capitalization. The number of
parameters and their order must also match: any mismatch will cause our testing programs to fail and will result in
loss of points for correctness. Parameter names will not be tested —change the parameter names if you want.

In this assignment, you may not use if-statements, conditional expressions, or loops.

Group A: The first constructor and the getter methods of class PhD.

Consider the constructor. Based on its specification, figure out what value it should place in each of the 7 fields
to make the class invariant true. Then, write a procedure named testConstructor1 in PhDTester to make
sure that the constructor fills in ALL fields correctly. The procedure should: Create one PhD object using the con-
structor and then check, using the getter methods, that all fields have the correct values. Since there are 7 fields,
there should be 7 assertEquals statements. As a by-product, all getter methods are also tested.

We advise creating a second PhD (in testConstructor1) of the other sex than the one first created and
testing —using function isFemale()— that its sex was properly stored.

Group B: the setter/mutator methods. Note that methods addAdvisor1 and addAdvisor2 may have to
change fields of both this PhD and its parent in order to maintain the class invariant —the advisor’s number of
advisees changes!

When testing the setter methods, you will have to create one or more PhD objects, call the setter methods, and
then use the getter methods to test whether the setter methods set the fields correctly. Good thing you already test-
ed the getters! Note that these setter methods may change more than one field; your testing procedure should
check that all fields that may be changed are changed correctly.

We are not asking you to write methods that change an existing father or mother to a different PhD. This
would require if-statements, which are not allowed. Read preconditions of methods carefully.

Constructor Description (and suggested javadoc specification)
PhD(String n, char g,
int y, int m)

Constructor: an instance for a person with name n, gender g, PhD year y, and PhD
month m. Its advisors are unknown, and it has no advisees.
Precondition: n has at least 1 character, m is in 1..12, and g is 'M' for male or 'F' for
female.

Getter Method Description (and suggested javadoc specification) Return Type
getName() Return this person's name. String
getYear() Return the year this person got their PhD. int
getMonth() Return the month this person got their PhD. int
isFemale() Return the value of "this person is a female". boolean
getAdvisor1() Return this Phd's first advisor (null if unknown). PhD (not String!)

getAdvisor2()
 Return this PhD's second advisor (null if unknown or non-
existent).

PhD (not String!)

numAdvisees() Return the number of PhD advisees of this person. int

���5CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

Group C: Two more constructors. The test procedure for group C has to create a PhD using the constructor given
below. This will require first creating two PhD objects using the first constructor and then checking that the new
constructor sets all 7 fields properly —and also the number of advisees of ad1 and ad2.

Group D: Write two comparison methods —to see which of two people got their PhD first and to see whether two
people are “intellectual siblings” (i.e. they are not the same object and they have a non-null advisor in common).
Write these using only boolean expressions (with !, &&, and || and relations <, <=, ==, etc.). Do not use if-state-
ments, switches, addition, multiplication, etc. Each is best written as a single return statement.

5. In Eclipse, click men item Project -> Generate Javadoc. In the window that opens, make sure you are generat-
ing Javadoc for project, a1PhD, using visibility public, and storing it in a1PhD/doc. Then open doc/in-
dex.html. You should see your method and class specifications. Read through them from the perspective of
someone who has not read your code. Fix the comments in class PhD, if necessary, so that they are appropriate
to that perspective. You must be able to understand everything there is to know about writing a call on each
method from the specification that you see by clicking the Javadoc button —that is, without knowing anything
about the private fields. Thus, the fields should not be mentioned.

Then, and only then, add a comment at the top of file PhD.java saying that you checked the Javadoc output
and it was OK.

6. Check carefully that each method that adds an advisor for a PhD updates the advisor’s number of advisees. Four
methods do this.

7. Review the learning objectives and reread this document to make sure your code conforms to our instructions.
Check each of the following, one by one, carefully. Note that 50 points are given for the items below and 50
points are given for actual correctness of methods.

Setter Method Description (and suggested javadoc specification)
addAdvisor1(PhD p) Add p as this person's first PhD advisor.

Precondition: this person's first advisor is unknown and p is not null.
addAdvisor2(PhD p) Add p as this persons second advisor.

Precondition: This person's first advisor is known, their second advisor is
unknown, p is not null, and p is different from this person's first advisor.

Constructors Description (and suggested javadoc specification)
PhD(String n, char g, int
y, int m, PhD ad)

Constructor: a PhD with name n, gender g, PhD year y, PhD month m, first
advisor ad, and no second advisor.
Precondition: n has at least 1 char, g is 'F' for female or 'M' for male, m is in
1..12, and ad is not null.

PhD(String n, char g, int
y, int m, PhD ad1, PhD
ad2)

Constructor: a PhD with name n, gender g, PhD year y, PhD month m, first
advisor ad1, and second advisor ad2.
Precondition: n has at least 1 char, g is 'F' for female or 'M' for male, m is in
1..12, ad1 and ad2 are not null, and ad1 and ad2 are different.

Comparison Method Description (and suggested javadoc specification) Return type
isOlderThan(PhD p) Return value of "this person got their PhD before p did."

Precondition: p is not null.
boolean

isPhDSibling(PhD p) Return value of "this person and p are intellectual sib-
lings.” Precondition: p is not null.

boolean

���6CS2110 Spring 2015 Assignment A1. PhD Genealogy. Due on CMS by Friday, 6 February

o 5 Points. Are all lines short enough that horizontal scrolling is not necessary (about 80 chars is long
enough). Do you have a blank line before the specification of each method and no blank line after it?

o 10 Points. Is your class invariant correct —are all fields defined and all field constraints given?

o 5 Points. Is the name of each method and the types of its parameters exactly as stated in step 4 above?
(The simplest way to do this was to copy and paste.) More points may be deducted if we have difficulty
fixing your submission so that it compiles with our grading program.

o 10 Points. Are all specifications complete, with any necessary preconditions? Remember, we specified
every method carefully and suggested copying our specs and pasting them into your code. Are they in
Javadoc comments?

o 5 points. Do you have assert statements at the beginning of each method that has a precondition to
check that precondition?

o 5 Points. Did you check the Javadoc output and then put a comment at the top of class PhD?

o 10 Points. Did you write one (and only one) testing method for each of the groups A, B, C, and D of
step 4? Thus, do you have four (4) test procedures? Does each procedure have a name that gives the
reader an idea what the procedure is testing, so that a specification is not necessary? Did you properly
test? For example, in testing each constructor, did you make sure to test that all 7 fields have the correct
value? Do you have enough test cases? For example, testing whether one date comes before another
date, when each is given by a month and a year, probably requires at least 5 test cases.

8. Upload files PhD.java and PhDTester.java on the CMS by the due date. Do not submit any files with the
extension/suffix .java~ (with the tilde) or .class. It will help to set the preferences in your operating system so
that extensions always appear.

http://cms.csuglab.cornell.edu/

