Fibonacci
(Leonardo Pisano)
1170-1240?
Statue in Pisa Italy
And recurrences

FIBONACCI

Lecture 23
CS2110 - Spring 2015

Fibonacci function (1202)

fib $(0)=0$
$\operatorname{fib}(1)=1$
$\operatorname{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\operatorname{fib}(\mathrm{n}-2)$ for $\mathrm{n} \geq 2$

But sequence described much earlier in India
/** Return fib(n). Precondition: $\mathrm{n} \geq 2$.*/
public static int $f($ int $n)\{$
if ($\mathrm{n} \leq=1$) return n ;
return $\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$;
\}
$0,1,1,2,3,5,8,13,21, \ldots$

Downloaded from wikipedia

fibonacci and bees

Fibonacci in nature

The artichoke uses the
Fibonacci pattern to spiral the sprouts of its flowers.

The artichoke sprouts its leafs at a constant amount of rotation: 222.5 degrees (in other words the distance between one leaf and the next is 222.5 degrees). You can measure this rotation by dividing 360 degrees (a full spin) by the inverse of the golden ratio. We see later how the golden ratio is connected to fibonacci.
topones.weebly.com/1/post/2012/10/the-artichoke-and-fibonacci.html

Blooms: strobe-animated sculptures

www.instructables.com/id/Blooming-Zoetrope-Sculptures/

Uses of Fibonacci sequence in CS

Fibonacci search
Fibonacci heap data strcture
Fibonacci cubes: graphs used for interconnecting parallel and distributed systems

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

Calculates $f(15)$ four times! What is complexity of $f(n)$?

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

$T(0)=a$
Recurrence relation for the time
$T(1)=a$
$T(n)=T(n-1)+T(n-2)$
Theorem: $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Theorem: $\mathrm{P}(\mathrm{n})$ holds for $\mathrm{n}>=\mathrm{N}$:

$$
\mathrm{P}(\mathrm{n}): \mathrm{T}(\mathrm{n}) \leq \mathrm{c} 2^{\mathrm{n}}
$$

Base case: $\mathrm{T}(0)=\mathrm{a} \leq \mathrm{c} 2^{0}$ (use $\mathrm{c}=\mathrm{a}$ or anything bigger)
Base case: $\mathrm{T}(1)=\mathrm{a} \leq \mathrm{c} 2^{1}$ (use $\mathrm{c}=\mathrm{a}$ or anything bigger)

Recursion for fib: $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$

$T(0)=a$
Recurrence relation for the time
$T(1)=a$
$T(n)=T(n-1)+T(n-2)+a \quad=\quad \begin{gathered}T(k+1) \\ <\operatorname{def} \text { of } T>\end{gathered}$
Theorem: P(n) holds for $\mathrm{n}>=\mathrm{N}$:

$$
\mathrm{P}(\mathrm{n}): \mathrm{T}(\mathrm{n}) \leq \mathrm{c} 2^{\mathrm{n}}
$$

Inductive case: Assume
$P(0), \ldots, P(k), k \geq 2$, and

$$
\begin{gathered}
\mathrm{T}(\mathrm{k})+\mathrm{T}(\mathrm{k}-1)+\mathrm{a} \\
<= \\
\mathrm{c} 2^{\mathrm{k}}+\mathrm{P}(\mathrm{k}), \mathrm{P}(\mathrm{k}-1)>
\end{gathered}
$$

<arith>
$=c 2^{\mathrm{k}+1}(1 / 2+1 / 4)+\mathrm{a}$
<arith, choose $\mathrm{c}=\mathrm{a}$ >
$\leq \mathrm{c} 2^{\mathrm{k}+1}$
prove $\mathrm{P}(\mathrm{k}+1)$

The golden ratio

$a>0$ and $b>a>0$ are in the golden ratio if

$$
\begin{aligned}
& (a+b) / a=a / b \quad \text { call that value } \varphi \\
& \varphi^{2}=\varphi+1 \quad \text { so } \varphi=(1+\operatorname{sqrt}(5)) / 2=1.618 \ldots
\end{aligned}
$$

b
ratio of sum of sides to longer side

$$
=
$$

ratio of longer side to shorter side

The golden ratio

How to draw a golden rectangle

The Parthenon

Can prove that Fibonacci recurrence is $\mathrm{O}\left(\varphi^{\mathrm{n}}\right)$

We won't prove it.
Requires proof by induction
Relies on identity $\varphi^{2}=\varphi+1$

Linear algorithm to calculate fib(n)

```
/** Return fib(n), for \(\mathrm{n}>=0\). */
public static int f(int \(n\) ) \{
    if ( \(\mathrm{n}<=1\) ) return 1;
    int \(p=0\); int \(c=1\); int \(i=2\);
    \(/ /\) invariant: \(p=f i b(i-2)\) and \(c=f i b(i-1)\)
    while ( \(\mathrm{i}<\mathrm{n}\) ) \{
        int fibi \(=c+p ; p=c ; c=\) fibi;
        \(\mathrm{i}=\mathrm{i}+1\);
    \}
    return \(c+p\);
\}
```


Logarithmic algorithm!

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n+2}=f_{n+1}+f_{n}
\end{aligned}
$$

You know a logarithmic algorithm for exponentiation -recursive and iterative versions

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{f_{n}}{f_{n+1}}=\binom{f_{n+1}}{f_{n+2}} \text { so: }\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n}\left[\begin{array}{l}
f_{0} \\
f_{1}
\end{array}\right)=\binom{f_{n}}{f_{n+1}}
$$

Gries and Levin/ Computing a Fibonacci number in log time. IPL 2 (October 1980), 68-69.

Constant-time algorithm!

Define $\phi=(1+\sqrt{ } 5) / 2 \quad \phi^{\prime}=(1-\sqrt{ } 5) / 2$

The golden ratio again.

Prove by induction on n that

$$
f n=\left(\phi^{n}-\phi^{, n}\right) / \sqrt{ } 5
$$

We went from $O\left(2^{n}\right)$ to $O(1)$

