
DISCUSSION OF SOME
QUESTIONS ON PRELIM 2
Lecture 23
CS2110 – Spring 2015

About prelim 2 Mean: 76.3. Median: 78

The few programming problems
(recursion) were not done so well,
will discuss in a minute.

Pick up prelim in handback room
216 Gates. Regrade request? Fill
out form. Please wait until you
see solutions, which we expect to
post on the Piazza tonight.

2

Please do not email asking for
your course grade based on
what you have done so far.
We can’t answer that now.
Too many other things to do.
Prelims are important. Most
people do very well on
assignments. Prelims show
mastery of material

A8 available today

Due date: Tuesday, 5 May (last day of class)

We may allow them until 7-8 May, with very small
penalty. But we don’t guarantee that yet.

As soon as possible after A8 deadline, we complete
grading, figure out tentative course grade, and make
it available.

You choose to take final or not. Taking it may lower as
well as raise grade (does not happen often).

Final optional: Sunday 17 May

3

Recursion
4

It was heartbreaking to see so many people not getting
recursion problems correct. These were relatively easy. Let’s
try one last time to get across how to write recursive methods.

To do these problems well, you have to:

•  Read specification
•  Deal with base cases
•  Use the recursive definition

 of the data structure
•  Keep things simple

 –don’t complicate
•  Draw diagrams, pictures.

Changing a pattern of
thinking requires

consciously applying
good strategies,

principles

Reversing a BST
5

Consider trees whose nodes, of class Node, contain 3 fields:
value: the value at this node. Type is some class
left: left subtree (null if empty)
right: right subtree (null if empty)

5

3 6

4 1 9

BST created using > instead of < for comparison, so the tree
got put in kind of backward. E.g. inorder traversal of one BST
should have been (1, 3, 4, 5, 6, 9) but was (9, 6, 5, 4, 3, 1).

5

3 6

1 4 9

Don’t change
field value

Reverse a BST

/** Precondition: t is a binary search tree.
 * If t != null, change as many nodes of t as necessary
 * to reverse the inorder traversal of the tree. */
public static void reverse(Node t) {
 if (t = null) return;

6

Estimate: over 25% people missed
this base case. Why?

1.  Did not read the specification.
2.  Did not think about base case.

Reverse a BST

/** Precondition: t is a binary search tree.
 * If t != null, change as many nodes of t as necessary
 * to reverse the inorder traversal of the tree. */
public static void reverse(Node t) {
 if (t = null) return;
 if (t.left == null && t.right == null) {…}
 if (t.left.left …) {…}

7

Complicates matters.
Doesn’t use the recursive
 definition of the data
 structure properly.

root

Reverse a BST

/** Precondition: t is a binary search tree.
 * If t != null, change as many nodes of t as necessary
 * to reverse the inorder traversal of the tree. */
public static void reverse(Node t) {
 if (t = null) return;

8

Tree is either null or

root

tree tree

When viewing a tree as a
recursive structure, like this, the
code that is processing the root
---the whole tree--- should not
look into the contents of the
subtrees. They are just trees.

Writing a recursive tree
method? Draw this tree!

Reverse a BST

/** Precondition: t is a binary search tree.
 * If t != null, change as many nodes of t as necessary
 * to reverse the inorder traversal of the tree. */
public static void reverse(Node t) {
 if (t = null) return;
 Swap t.left and t.right;
 reverse(t.left);
 reverse(t.right);

9

Tree is either null or

root

tree tree
Writing a recursive tree
method? Draw this tree!

/** Return true iff tree t equals tree s –meaning they have the
 same shape and same values in their corresponding nodes. */

public static boolean equals(Node s, Node t) {

 Complicated code that looks at
 s.left.value, s.right.value, s.left.left, etc

Tree equality
10

Again, many people didn’t handle
the base case: At least one of s and
t being null.

root

But then you are viewing the tree like
this instead of in terms of the recursive
definition of the tree.

Tree equality

/** Return true iff tree t equals tree s –meaning they have the
 same shape and same values in their corresponding nodes. */

public static boolean equals(Node s, Node t) {

 if (s == null || t == null)

 return s == t;

 return s.value == t.value &&
 equals(s.left, t.left) &&

 equals(s.right, t.right);

11

What is the base case?
At least one of s and t is null

root

A tree is empty (null) or

root s t

Reverse values in a doubly linked list

/** Reverse the values in the nodes.
 * First and last point to first and last nodes to be reversed */

public static void rev(Node first, Node last)

12

first last

 5 6 9 2

 2 9 6 5

objects of class Node. Draw only what
is necessary for understanding

Reverse values in a doubly linked list

/** Reverse the values in the nodes.
 * First and last point to first and last nodes to be reversed */

public static void rev(Node first, Node last)

 if (first == last) return;

13

 5 6 9 2

first last

Base cases: (list is empty) and
 5

first last

Reverse values in a doubly linked list

/** Reverse the values in the nodes.
 * First and last point to first and last nodes to be reversed */

public static void rev(Node first, Node last)

 if (first == last) return;

 Swap first.value and last.value;

 if (first.next == last) return;
 rev(first.next, last.prev);

14

 5 6 9 2

first last

Be careful. If
list has only
two values,
reversing is

done

Recursion over a data structure
15

This is not a matter of learning facts. It is a matter of how you
approach a new problem, how you think about it, develop a
solution.

To do such problems well, you have to:

•  Read specification
•  Deal with base cases
•  Use the recursive definition

 of the data structure
•  Keep things simple

 –don’t complicate
•  Draw diagrams, pictures.

Changing a pattern of
thinking requires

consciously applying
good strategies,

principles

