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INDUCTION 
Lecture 23 
CS2110 – Spring 2015 

A scientist gave a lecture on astronomy. He described how 
the earth orbits the sun, which, in turn, orbits the center of 
a vast collection of stars called our galaxy.  

Afterward, a lady got up and said, “That’s rubbish. The 
world is really a flat plate supported on the back of a giant 
turtle.” 

The scientist gave a superior smile before replying, 
"What’s the turtle standing on?" “Another turtle,” was the 
reply. 

“And that turtle?” You're very clever, young man, very 
clever", said the old lady. "But it's turtles all the way 
down!” 

We may not cover all slides! 
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This 50-minute lecture cannot cover all the material. 
But you are responsible for it. Please study it all. 
1. Defining functions recursively, iteratively, and in closed form 
2. Induction over the integers 
3. Proving recursive methods correct using induction 
4. Weak versus strong induction 

Overview: Reasoning about programs 
3 

Our broad problem: code is unlikely to be correct if 
we don’t have good reasons for believing it works 

¤ We need clear problem statements 
¤ We need a rigorous way to convince ourselves that 

what we wrote solves the problem 

But reasoning about programs can be hard 
¤ Especially with recursion, concurrency 
¤ Today: focus on induction and recursion 

Dominos 
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Assume equally spaced dominos, with the spacing between 
dominos less than domino length 
How would you argue that all dominos would fall if we push 
the first one over?? 
¨  Dumb argument: 

¤  Domino 0 falls because we push it over 
¤  Domino 0 hits domino 1, therefore domino 1 falls 
¤  Domino 1 hits domino 2, therefore domino 2 falls 
¤  Domino 2 hits domino 3, therefore domino 3 falls 
¤  ... Go on forever … 

¨  Can we make a more compact argument? 

0 1 2 3 5 4 

Better argument, using mathematical induction 
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¤ Domino 0 falls because we push it over (Base Case) 
¤ Assume induction hypotheses P(0), …, P(k), for arbitrary k ≥ 0: 

  P(i): domino i falls over 

¤  Because domino k’s length is larger than inter-domino spacing, 
it will knock over domino k+1 (Inductive Step) 

¤  Because k is arbitrary, conclude that all dominos will fall over 
(Conclusion) 

¨  This is an inductive argument 
¨  Not only is this argument more compact, it works for an arbitrary 

number of dominos! 

0 1 … k+1 k 

(Strong) Induction over integers 
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To prove that property P(n) holds for all integers n ≥ 0, 
1.  Base case: Prove that P(0) is true 

 
2.  Inductive Case: Assume inductive hypotheses P(0), …, P(k) for 

an arbitrary integer k >= 0, prove P(k+1) 

3.  Conclusion: P(n) holds for all integers n ≥ 0 

Alternative Inductive Case: Assume inductive hypotheses 
P(0), … P(k-1) for an arbitrary integer k > 0, prove P(k) 



4/21/15 

2 

Can define a function in various ways: Example 
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Let  S : int → int  be the function where S(n) is the sum of the 
integers from 0 to n.  For example, 
               S(0) = 0            S(3) = 0+1+2+3 = 6 
 
¨ Definition, iterative form:    S(n) = 0+1+ … + n 

  
                                              =    sum i=0 n  i	
  

  
¨ Definition, recursive form: 

 S(0) = 0            S(n) = n + S(n-1)  for n > 0 
 

¨ Definition: closed form (doesn’t use recursion or iteration): 
 S(n) = n(n+1)/2 

How do we know these three definitions are equivalent? 
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¨  Definition, iterative form:    S(n) = 0+1+ … + n 
  

                                              =    sum i=0 n  i	
  
  

¨  Definition, recursive form: 
 S(0) = 0            S(n) = n + S(n-1)  for n > 0 

 
¨  Definition: closed form:        S(n) = n(n+1)/2 

How can we prove they are equivalent? 

Example proof by mathematical induction (2 slides) 
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¨  Definition, recursive form: 
 S1(0) = 0            S1(n) = n + S1(n-1)  for n > 0 

¨  Definition: closed form: 
S2(n) = n(n+1)/2 

Theorem: P(n) holds for 0 ≤ n, where  

            P(n) is:  S1(n) = S2(n) 

We made P(n) explicit, 
we wrote it down 

Base case: n = 0, so  
P(0) is S1(0) = S2(0) 

       S2(0) 
=        <def of S2> 
       0(1)/2 
=       <arith> 
       0 
=       <def of S1> 
       S1(0)  

Example proof by mathematical induction 
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¨  Definition, recursive form: 
 S1(0) = 0            S1(n) = n + S1(n-1)  for n > 0 

¨  Definition: closed form: 
S2(n) = n(n+1)/2 

Theorem: P(n) holds for 0 ≤ n, 

where P(n) is:  S1(n) = S2(n) 

Inductive case: 
For arbitrary k, 
assume P(0), … P(k) 
and prove P(k+1) 

       S1(k+1) 
=        <def of S1> 
       k+1 + S1(k) 
        
 
 
 
 
     (k+1)(k+2)/2 
=      <def of S2> 
      S2(k+1) 

=        <ind hyp P1(k)> 
       k + 1 + S2(k) 
 =       <def of S2> 
      k + 1 + k(k+1)/2 
=          <arith> 

Exposed inductive hypothesis 

Write S1 as a 
Java function 
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S1(0) = 0 
S1(n) = n + S1(n-1)  for n > 0 
S2(n) = n(n+1)/2 
Prove P(n) for all n: S1(n) = S2(n) 

Base case: The call S1(0) 
returns 0, which is S(0).  

This is how we explained how to 
understand a recursive method. 

You see now that we understand it 
(prove it correct) using induction! 

/** Return S2(n): n(n+1)/2 */ 
public int S1(int n) { 
    if (n == 0) return 0; 
    return n + S1(n-1); 
} 
     

Recursive case, n > 0: Assume that the inner call 
does what the spec says: return (n-1)(n)/2. 
Arithmetic then shows that correct value is returned: 
         n + S1(n-1) 
    =       <assumption> 
         n + (n-1)(n)/2  
    =       <arithmetic> 
         n(n+1)/2.  

Proving a recursive function correct using induction 
12 

1. Make sure you there is a good specification 

3. Prove the recursive cases. 
A. Assume P(k) for 0 ≤ k < n (recursive calls do what spec says) 
B. Prove that all recursive calls have argument < n. 
C. Knowing that each recursive call S1(k) returns S2(k), prove 
that the body does its job. 
 

/** Return S2(n)*/ 
public int S1(int n) { 
    … 
} 
     

2. Prove the base cases –those values of n that do not 
involve recursion.  

Write P(k): S1(k) = S2(k) 
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(Strong) Induction over integers 
13 

To prove that property P(n) holds for all integers n ≥ 0, 
1.  Base case: Prove that P(0) is true 

 
2.  Inductive Step: Assume inductive hypotheses P(0), … P(k) for 

an arbitrary integer k >= 0, prove P(k+1). 
 

¨  Conclusion: P(n) holds for all integers n ≥ 0 

Alternative Induction Step: Assume inductive hypotheses 
P(0), … P(k-1) for an arbitrary  integer k > 0, prove P(k) 

A Note on Base Cases  
14 

Sometimes we are interested in showing some proposition is true 
for integers ≥ b 
¨  Intuition: we knock over domino b, and dominoes in front get 

knocked over; not interested in dominoes 0..b-1 
¨  In general, the base case in induction does not have to be 0 
¨  If base case is an integer b 

¤  Induction proves the proposition for n = b, b+1, b+2, … 
¤ Does not say anything about n in 0..b-1 

0 1 2 3 5 4 

Math induction nonzero base case: stamp problem 
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Claim: Can make any amount of postage above 7¢ 
using 3¢ and 5¢ stamps. 
Theorem: For n ≥ 8, P(n) holds: 
   P(n): There exist non-negative ints b, c such that n = 3b + 5c 
   

Base case: True for n=8:  8 = 3 + 5. 
Choose b = 1 and c = 1. 
 
i.e. one 3¢ stamp and one 5¢ stamp 

Math induction nonzero base case: stamp problem 
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Theorem: For n ≥ 8, P(n) holds: 
   P(n): There exist non-negative ints b, c such that n = 3b + 5c 
   
Induction Hypothesis: P(8), …, P(k) hold 
                               for arbitrary k ≥ 8: k = 3b + 5c 
Inductive Step:  Two cases: c > 0 and c = 0 

¤ Case c > 0 
There is 5¢ stamp. Replace it by two 3¢ stamps.  Get k+1. 

    Formally k+1 = 3b + 5c + 1  =  3(b+2) + 5(c-1) 

¤ Case c = 0, i.e. k = 3b. Since k >= 8, k >= 9 also, i.e. 
there are at least 3 3¢ stamps. Replace them by two 5¢ 
stamps.  Get k+1. 

   Formally, k+1 = 3b + 1 = 3(b-3) + 5(2) 

Sum of squares: more complex example 
17 

Let SQ : int → int be the function that gives the sum of 
the squares of integers from 0 to n: 
¨  Definition (recursive): 
           SQ(0) = 0     
           SQ(n) = n2 + SQ(n-1)   for n > 0 

¨  Definition (iterative form):   
           SQ(n) = 02 + 12 + … + n2  

¨  Equivalent closed-form expression? 
   (neither iterative nor recursive) 

Closed-Form Expression for SQ(n) 
18 

Sum of integers in 0..n was n(n+1)/2, 
which is a quadratic in n, i.e. O(n2) 
 
Inspired guess: perhaps sum of squares of  
integers between 0 through n is a cubic in n 

Conjecture: SQ(n) = an3 + bn2 + cn + d  
where a, b, c, d are unknown coefficients 

How can we find the four unknowns? 
Idea: Use any 4 values of n to generate 4 linear equations, 
and then solve 
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Finding coefficients 

19 

 

Use  n = 0, 1, 2, 3 
¤  SQ(0) =   0  = a·∙0   + b·∙0 + c·∙0 + d  
¤  SQ(1) =   1  = a·∙1   + b·∙1 + c·∙1 + d  
¤  SQ(2) =   5  = a·∙8   + b·∙4 + c·∙2 + d  
¤  SQ(3) =  14  = a·∙27 + b·∙9 + c·∙3 + d 
 

Solve these 4 equations to get 
a = 1/3      b = 1/2      c = 1/6      d = 0 

SQ(n) = 02 + 12 + … + n2 = an3 + bn2 + cn + d  

Is the formula correct? 
20 

 This suggests 

          SQ(n) = 02 + 12 + … + n2  
                   = n3/3 + n2/2 + n/6 

   = (2n3 + 3n2 + n)/6 
                   = n(n+1)(2n+1)/6 

Question: Is this closed-form solution true for all n? 
¨  Remember, we used only n = 0,1,2,3 to determine 

these coefficients 
¨  We do not know that the closed-form expression is 

correct for other values of n 

One approach 
21 

Try a few other values of n to see if they work. 
¤  Try n = 5:     SQ(n) = 0+1+4+9+16+25 = 55 
¤ Closed-form expression: 5·∙6·∙11/6 = 55 
¤ Works! 

Try some more values… 

We can never prove validity of the closed-form solution 
for all values of n this way, since there are an infinite 
number of values of n 

Are these two functions equal? 
22 

SQR (R for recursive) 
  SQR(0) = 0 
  SQR(n) = SQR(n-1) + n2,   n > 0 

 
SQC (C for closed-form) 
 

  SQC(n) = n(n+1)(2n+1)/6 

Define P(n) as SQR(n)= SQC(n) 

¨  Prove P(0) 
¨  Assume P(0), …, P(k) for arbitrary k ≥ 0,  

prove P(k+1) under these assumptions 

P(1) P(2) 

Theorem? SQR(n) = SQC(n) for all n? 

23 

P(0) 

P(k) P(k+1) 

SQR(0) = 0 
SQR(n) = SQR(n-1) + n2,   n > 0 
 
SQC(n) = n(n+1)(2n+1)/6 

Proof (by Induction) 
24 

Here is P(n): SQR(n) = SQC(n) 

SQR(0) = 0 
SQR(n) = SQR(n-1) + n2,   n > 0 
 
SQC(n) = n(n+1)(2n+1)/6 

In doing such proofs, 
it is important to 
1.  State carefully what you are trying to prove:  P(n) for n ≥ 0 
2.  Prove the base case P(0). 
3.  Assume the inductive hypotheses P(0), …, P(k) for arbitrary  

k ≥ 0 and prove P(k+1). 
4.  When attempting to prove P(k+1), expose 1 or more 

inductive hypotheses P(0), …, P(k). 
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Proof (by Induction) 
25 

Base case: P(0) holds because SQR(0) = 0 = SQC(0), 
                  by definition 
 
Inductive case: 
Inductive Hypotheses: P(0), …, P(k), k ≥ 0: 
Using them, prove P(k+1) 
    

SQR(0) = 0 
SQR(n) = SQR(n-1) + n2,   n > 0 
 
SQC(n) = n(n+1)(2n+1)/6 

Here is P(n): SQR(n) = SQC(n) 

Proof of P(k+1) 
26 

Inductive Hypotheses: P(k), k ≥ 0:   SQR(k) = SQC(k) 
         SQR(k+1)  
    
 
 
 
 

SQR(0) = 0 
SQR(n) = SQR(n-1) + n2,   n > 0 
 
SQC(n) = n(n+1)(2n+1)/6 

   =       <def of SQR(k+1)> 
        SQR(k) + (k+1)2         

 =       <Ind Hyp P(k)> 
      SQC(k) + (k+1)2          
 =      <def of SQC(k)> 
      k(k+1)(2k+1)/6 + (k+1)2   

      (k+1)(k+2)(2k+3)/6 

 =      <def of SQC(k+1)> 
      SQC(k+1)    

 =     <algebra  ---we leave this to you> 
Don’t just flounder around.  

Opportunity directed. 
Expose induction hypothesis 

Theorem. Every integer > 1 is divisible by a prime. 

Restatement. For all n >= 2, P(n) holds: 
      P(n): n is divisible by a prime. 
Proof 
 

27 

Base case: P(2):   2 is a prime, and it divides itself. 

Inductive case: Assume P(2), …, P(k) and prove P(k+1). 
     Case 1. k+1 is prime, so it is divisible by itself. 

Case 2. k+1 is composite –it has a divisor d in 2..k. 
P(d) holds, so some prime p divides d. 
Since p divides d and d divides k+1, p divides k+1. 
So k+1 is divisible by a prime. 

Inductive case 
required not 

P(k) but P(d) 

k+1  =  d*c1  = p*c2*c1  (for some c1 and c2) 

Strong versus weak induction 
28 

In our first proofs, in inductive case, we assumed P(0), …, P(k) but 
used only P(k) in the proof. Didn’t have to assume P(0), … P(k-1). 

That’s using weak induction. 

In the last proof, in inductive case, we assumed P(0), …, P(k) and 
actually used P(d), where d < k, in the proof. 

That’s strong induction. 

Strong induction and weak induction are equally powerful —one 
can turn a strong-induction proof into a weak-induction proof 
with an appropriate change in what P(n) is. 

Don’t be concerned about this difference! 

Strong versus weak induction 
29 

We want to prove that some property P(n) holds for all n 
¨  Weak induction 

¤  Base case: Prove P(0) 
¤  Inductive case: 

Assume P(k) for arbitrary k ≥ 0 and prove P(k+1) 
¨  Strong induction 

¤  Base case: Prove P(0) 
¤  Inductive case: 

Assume P(0), …, P(k) for arbitrary k ≥ 0 and prove P(k+1) 

The two proof techniques are equally powerful. 
Somebody proved that. 

Complete binary trees (cbtrees) 
30 

Theorem: 
A depth-d cbtree has 2d leaves and 2d+1–1 nodes. 
 
Proof by induction on d. 
P(d): A depth-d cbtree has 2d leaves and 2d+1–1 nodes. 
 
Base case: d = 0. A cbtree of depth 0 consists of one node. 
It is a leaf. There are 20 = 1 leaves and 21 – 1 = 1 nodes. 
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Proof of P(k+1)     for cbtrees 
31 

Induction hypotheses P(0), …, P(k), for k ≥ 0. 
P(k): A depth-k cbtree has 2k leaves and 2k+1–1 nodes. 
Proof of P(k+1). A cbtree of depth k+1 arises by adding 
2 children to each of the leaves of a depth-k cbtree. Thus, 
the depth k+1 tree has 2k+1 leaves. 
 

… 
depth k 

2k leaves  

2k+1 nodes added 

The number of nodes is now 
2k+1–1  +  2k+1 

= 2k+2 - 1 

What are the “dominos”? 
32 

¨  In some problems, it can be tricky to determine how 
to set up the induction 

¨  This is particularly true for geometric problems that 
can be attacked using induction 

Tiling Elaine’s kitchen 
33 

Kitchen in Gries’s house is 8 x 8. A refrigerator sits on one of the 
1 x 1 squares 

His wife, Elaine, wants the kitchen tiled with el-shaped tiles –
every square except where the refrigerator sits should be tiled. 

8 

8 

Proof outline 
34 

Consider kitchens of size 2n x 2n  for n = 0, 1, 2,… 
P(n): A 2n x 2n kitchen with one square covered can be tiled. 
¨  Base case: Show that tiling is possible for 1 x 1 board 
¨  Induction Hypothesis: for some k ≥ 0, P(k) holds 
¨  Prove P(k+1) assuming P(k) 

 

The 8 x 8 kitchen is a special case 
of this argument. 
We will have proven the 8 x 8 
special case by solving a more 
general problem! 

Base case 
35 

The 1 x 1 kitchen can be tiled by putting 0 tiles down. 
The refrigerator sits on the single square 

 

 

                               

Inductive case  

36 

P(k): A 2k x 2k kitchen with one square covered can be tiled. 
 
                               

2k+1 

2k+1 

In order to use the inductive hypothesis P(k), we have to 
expose kitchens of size 2k x 2k.  How do we draw them? 
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Recursive case  

37 

P(k): A 2k x 2k kitchen with one square covered can be tiled. 
 
                               

2k+1 

2k+1 

By P(k), the upper right kitchen can be tiled 
What about the other 3?  

2k 

2k 

2k 2k 

Recursive case  

38 

P(k): A 2k x 2k kitchen with one square covered can be tiled. 
 
                               Put in one tile so that each 2k x 2k kitchen has 

one square covered. Now, by P(k), all four 2k x 2k 
kitchens can be tiles  

2k+1 

2k+1 

2k 

2k 

2k 2k 

When induction fails 
39 

¨  Sometimes an inductive proof strategy for some 
proposition may fail 

¨  This does not necessarily mean that the proposition is 
wrong 
¤  It may just mean that the particular inductive strategy you 

are using is the wrong choice 

¨  A different induction hypothesis (or a different proof 
strategy altogether) may succeed 

Tiling example (poor strategy) 
40 

Try a different induction strategy 
¨  Proposition 

¤ Any n x n board with one square covered can be tiled 
¨  Problem 

¤ A 3 x 3 board with one square covered has 8 remaining 
squares, but the tiles have 3 squares; tiling is impossible 

¨  Thus, any attempt to give an inductive proof of this 
proposition must fail 

¨  Note that this failed proof does not tell us anything 
about the 8x8 case 

A seemingly similar tiling problem 
41 

¨  A chessboard has opposite corners cut out of it.  Can the 
remaining board be tiled using tiles of the shape shown in the 
picture (rotation allowed)? 

¨  Induction fails here.  Why?  (Well…for one thing, this board 
can’t be tiled with dominos.) 

8 

8 

Procedure to tile a kitchen 

/** Tile a kitchen of size 2k x 2k  . 
      Precondition: k >= 0 and one square is covered */ 
public static void tile(int k, Positions p) { 
      if (k == 0) return; 
      View the kitchen as 4 kitchens of size 2k-1 x 2k-1  ; 
      Place one tile so that all 4 kitchens have one tile covered. 
      tile(k-1, positions for upper left kitchen); 
      tile(k-1, positions for upper right kitchen); 
      tile(k-1, positions for lower left kitchen); 
      tile(k-1, positions for lower right kitchen); 
} 

42 

p gives 2 things: 
1.  Position of top left corner of kitchen 
2.  Position of covered square   

Use abstraction to 
help focus attention 
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Procedure to tile a kitchen 

/** Tile a kitchen of size 2k x 2k  . 
      Precondition: k >= 0 and one square is covered */ 
public static void tile(int k, Positions p) { 
      if (k == 0) return; 
      … 
} 

43 

Theorem. For all n ≥ 0, P(n) holds: 
         P(n): The call tile(n, p) tiles the kitchen given by n and p 

Proof by induction on n. 
Base case, n = 0. It’s a 1 x 1 covered square. No tiles need 
to be laid, and the procedure doesn’t lay any. 

P(k): The call tile(k, p) tiles the kitchen given by k and p 

public static void tile(int k, Positions p) { 
      if (k == 0) return; 
      View the kitchen as 4 kitchens of size 2k-1 x 2k-1  ; 
      Place one tile so that all 4 kitchens have one tile covered. 
      tile(k-1, p for upper left kitchen); 
      tile(k-1, p for upper right kitchen); 
      tile(k-1, p for lower left kitchen); 
      tile(k-1, p for lower right kitchen); 
} 

44 
Inductive case. Assume P(k-1) for k > 0, Prove P(k) 

There are four recursive calls. Each, by 
the inductive hypothesis P(k-1), tiles a 
kitchen … etc. 

Proving a recursive function correct 

/** = the number of ‘e’s in s */ 
public static int nE(String s) { 
     if (s.length == 0) return 0;  // base case 
     // {s has at least 1 char} 
     return (s[0] == ‘e’ ? 1 : 0)  +  nE(s[1..]) 
} 

45 

Theorem. For all n, n >= 0, P(n) holds: 
    P(n): For s a string of length n, nE(s) = number of ‘e’s in s 

Proof by induction on n 
Base case. If n = 0, the call nE(s) returns 0, which is the 
number of ‘e’s in s, the empty string. So P(0) holds. 

P(k): For s a string of length k, nE(s) = number of ‘e’s in s 

/** = the number of ‘e’s in s */ 
public static int nE(String s) { 
     if (s.length == 0) return 0;  // base case 
     // {s has at least 1 char} 
     return (s[0] == ‘e’ ? 1 : 0)  +  nE(s[1..]) 
} 

46 

Inductive case: Assume P(k), k ≥ 0, and prove P(k+1). 

Suppose s has length k+1. Then s[1..] has length k. By the 
inductive hypothesis P(k), 
                nE(s[1..]) = number of ‘e’s in s[1..]. 
Thus, the statement returns the number of ‘e’s in s. 

Conclusion 
47 

¨  Induction is a powerful proof technique 

¨  Recursion is a powerful programming technique 

¨  Induction and recursion are closely related 
¤ We can use induction to prove correctness and 

complexity results about recursive methods 


