
1

Lecture 22 – CS2110 – Spring 2015

RACE CONDITIONS AND
SYNCHRONIZATION

1

Assignment A8: Shipping Game
2

In a nut shell:
•  Bunch of cities with roads between them (a graph)
•  Parcels sitting at cities, have to be trucked to other cities
•  Trucks, all at a city called Truck Depot, have to be used to

move each parcel from its start city to its destination city. Then
return Trucks to the Home Depot

•  YOU have to write the program that tells the Trucks what to
do!

•  Efficiency is important! Use shortest paths where possible.
We DEMO A8

Assignment A8: Shipping Game
3

Assignment A8 is developed Michael (Shnik) Patashnik
Undergrad TA
A&S, studying Economics and CS

Other CS2110 staff involved: Eric Chahin, Alex Fusco, Aaron
Nelson, Alexandra Anderson.

Which one of you will be the next one to help
us develop our assignments?

A8 Efficiency
4

You want to get the best score possible! How much you do,
what you do, depends your time constraints, your abilities,
whether your find this assignment fun. Here are things to
consider.

It costs for a Truck to wait
It costs for a Truck to travel
It costs for a Truck to pick up and drop a Parcel
A LOT is gained by dropping a Parcel at its destination
Parcel Payoff is a LOT more if the truck that delivers it has
the same color as the Parcel.

Ideas for A8
5

•  Spend a lot of time thinking about the design, looking at
specs of Truck, Parcel, manager, etc. Look at class diagram
on page 7 of the handout.

•  Given a truck that has to pickup a Parcel, need to find a
quickest/shortest path to where Parcel is. Dfs and bfs won’t
do. Probably need a version of shortest-path algorithm from
a start node to another.

•  Each Truck has a field UserData in which you can store
anything you wish. E.g. a path from current location to
destination of the Parcel it is carrying.

•  Each Parcel also has a UserData field

You class MyManager extends game.Manager
6

We don’t give you Java
source files.
We give you only
the .class files and good
specs of the classes.
Specs are in
Data/doc

We demo looking at API
specs

2

Your main task
7

public class YourManager extends Manager {

 public @Override void run() {
 Look at map, parcels truck, do preprocessing
 and give Trucks their initial instructions
 }

 public @Override void truckNotification(Truck t,
 Notification message) {
 Called when event happens with Truck t —it
 waited to long and is prodding, it arrived at a city,
 there’s a parcel at the city, etc. This method should
 give the truck directions on how to proceed.
 }

Manager and trucks run in their own threads
8

public class YourManager extends Manager {
 public @Override void run() {… }
 public @Override void
 truckNotification(Truck t, Notification msg) { ... }
}

 Your manager Truck 1 Truck 2 …
 thread thread thread

Make sure
shared variables

don’t cause
problems.

E.g. Two Trucks try
to take the same

Parcel

Threads and synchronization in A8
9

A lot of synchronization happens behind the scenes in A8:
•  The manager that you write is a Thread.
•  Each Truck is a Thread.

Depending on your implementation, you may or may not have to
use synchronization primitives in your part.
Most of you will not use synchronized blocks at all.

Just be careful and ask yourself whether concurrency can cause
problems. E.g. can two trucks try to pick up the same Parcel at
the same time?

Your method run(): Preprocessing
10

for Parcel p do
 Choose a truck t to deliver p.
 Store p in a data structure in t’s user data.
end

How to choose? It’s up to you.
How to store data? It’s up to you.

Your truckNotification(Truck t, Notification msg)
11

// Always start with first if
if preprocessing not done then return;

if there are no Undelivered Parcels
 then Route t home and return;

if t holding a parcel then
 Route t to parcel’s destination,
 drop it off if there
else Find next parcel assigned to t,
 route to that parcel

Remember:
several threads
(Trucks) may be
executing this at
the same time. If
shared data
structures used,
must make sure
concurrency
doesn’t create
problems

Truck t calls this method to say that it has done something or it is
waiting for further instructions.

Reminder

!  A “race condition” arises if two threads try and share
some data

!  One updates it and the other reads it, or both
update the data

!  In such cases it is possible that we could see the data
“in the middle” of being updated
! A “race condition”: correctness depends on the update

racing to completion without the reader managing to
glimpse the in-progress update

! Synchronization (aka mutual exclusion) solves this

12

3

Java Synchronization (Locking)
13

private Stack<String> stack = new Stack<String>();

public void doSomething() {
 synchronized (stack) {
 if (stack.isEmpty()) return;
 String s = stack.pop();
 }
 //do something with s...
}

• Put critical operations in a (short) synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

 synchronized block

Synchronization on Objects
14

synchronized (foo) {
 // something else
}

synchronized (foo) {
 // something
}

synchronized (bar) {
 ...
}

Mutually
exclusive

Not mutually
exclusive

Not mutually
exclusive

Synchronization on Objects
15

{
 // unsynchronized code
}

synchronized (foo) {
 // something
}

Not mutually
exclusive

Java Synchronization (Locking)
16

public void doSomething() {
 synchronized (this) {
 ...
 }
}

public synchronized void doSomething() {
 ...
}

You can lock on any object, including this

is equivalent to

How locking works

!  Only one thread can “hold” a lock at a time
!  If several request the same lock, Java somehow decides

which will get it

!  The lock is released when the thread leaves the
synchronization block
!  synchronized(someObject) { protected code }
! The protected code has a mutual exclusion guarantee:

At most one thread can be in it

!  When released, some other thread can acquire the
lock

17

Locks are associated with objects

!  Every Object has its own built-in lock
! Just the same, some applications prefer to create

special classes of objects to use just for locking
! This is a stylistic decision and you should agree on it

with your teammates or learn the company policy if you
work at a company

!  Code is “thread safe” if it can handle multiple
threads using it… otherwise it is “unsafe”

18

4

Visualizing deadlock
19

Process
A

Process
B X Y

A has a lock on X
wants a lock on Y

B has a lock on Y
wants a lock on X

Deadlocks always involve cycles

!  They can include 2 or more threads or processes in
a waiting cycle

!  Other properties:
! The locks need to be mutually exclusive (no sharing of

the objects being locked)
! The application won’t give up and go away (no timer

associated with the lock request)
! There are no mechanisms for one thread to take locked

resources away from another
thread – no “preemption”

20

“... drop that mouse or
you’ll be down to 8 lives”

Dealing with deadlocks

!  We recommend designing code to either
! Acquire a lock, use it, then promptly release it, or
!  ... acquire locks in some “fixed” order

!  Example, suppose that we have objects a, b, c, ...
!  Now suppose that threads sometimes lock sets of

objects but always do so in alphabetical order
! Can a lock-wait cycle arise?
!  ... without cycles, no deadlocks can occur!

21

Higher level abstractions

!  Locking is a very low-level way to deal with
synchronization
! Very nuts-and-bolts

!  So, many programmers work with higher level
concepts. Sort of like ADTs for synchronization
! We’ll just look at one example today
! There are many others; take cs4410 to learn more

22

A producer/consumer example

!  Thread A produces loaves of bread and puts them
on a shelf with capacity K
! For example, maybe K=10

!  Thread B consumes the loaves by taking them off
the shelf
! Thread A doesn’t want to overload the shelf
! Thread B doesn’t wait to leave with empty arms

23

producer shelves consumer

Producer/Consumer example
24

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

5

Things to notice

!  Wait needs to wait on the same object that you
used for synchronizing (in our example, “this”, which
is this instance of the Bakery)

!  Notify wakes up just one waiting thread, notifyall
wakes all of them up

!  We used a while loop because we can’t predict
exactly which thread will wake up “next”

25

Bounded Buffer

!  Here we take our producer/consumer and add a
notion of passing something from the producer to
the consumer
! For example, producer generates strings
! Consumer takes those and puts them into a file

!  Question: why would we do this?
! Keeps the computer more steadily busy

26

Producer/Consumer example
27

class Bakery {
 int nLoaves = 0; // Current number of waiting loaves
 final int K = 10; // Shelf capacity

public synchronized void produce() {
 while(nLoaves == K) this.wait(); // Wait until not full
 ++nLoaves;
 this.notifyall(); // Signal: shelf not empty
}

public synchronized void consume() {
 while(nLoaves == 0) this.wait(); // Wait until not empty
 --nLoaves;
 this.notifyall(); // Signal: shelf not full
}

}

Bounded Buffer example
28

class BoundedBuffer<T> {
 int putPtr = 0, getPtr = 0; // Next slot to use
 int available = 0; // Items currently available
 final int K = 10; // buffer capacity
 T[] buffer = new T[K];

public synchronized void produce(T item) {
 while(available == K) this.wait(); // Wait until not full
 buffer[putPtr++ % K] = item;
 ++available;
 this.notifyall(); // Signal: not empty
}

public synchronized T consume() {
 while(available == 0) this.wait(); // Wait until not empty
 --available;
 T item = buffer[getPtr++ % K];
 this.notifyall(); // Signal: not full
 return item;
}

}

In an ideal world…

!  Bounded buffer allows producer and consumer to
both run concurrently, with neither blocking
! This happens if they run at the same average rate
! … and if the buffer is big enough to mask any brief

rate surges by either of the two

!  But if one does get ahead of the other, it waits
! This avoids the risk of producing so many items that we

run out of computer memory for them. Or of
accidentally trying to consume a non-existent item.

29

Trickier example

!  Suppose we want to use locking in a BST
! Goal: allow multiple threads to search the tree
! But don’t want an insertion to cause a search thread to

throw an exception

30

6

Code we’re given is thread unsafe
31

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public void put(Object goal, Object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

!  Just make both put and get synchronized:
! public synchronized Object get(…) { … }
! public synchronized void put(…) { … }

!  Let’s have a look….

32

Safe version: Attempt #1
33

class BST {
 Object name; // Name of this node
 Object value; // Value of associated with that name
 BST left, right; // Children of this node

 // Constructor
 public void BST(Object who, Object what) { name = who; value = what; }

// Returns value if found, else null
public synchronized Object get(Object goal) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
}

// Updates value if name is already in the tree, else adds new BST node
public synchronized void put(Object goal, object value) {
 if(name.equals(goal)) { this.value = value; return; }
 if(name.compareTo(goal) < 0) {
 if(left == null) { left = new BST(goal, value); return; }
 left.put(goal, value);
 } else {
 if(right == null) { right = new BST(goal, value); return; }
 right.put(goal, value);
 }
}

}

Attempt #1

!  Just make both put and get synchronized:
! public synchronized Object get(…) { … }
! public synchronized void put(…) { … }

!  This works but it kills ALL concurrency
! Only one thread can look at the tree at a time
! Even if all the threads were doing “get”!

34

Visualizing attempt #1
35

Cathy
cd4

Freddy
netid: ff1

Martin
mg8

Andy
am7

Zelda
za7

Darleen
dd9

Ernie
eb0

Put(Ernie, eb0)
Get(Martin)… must

wait!

Get(Martin)…
resumes

Attempt #2

!  put uses synchronized in method declaration
! So it locks every node it visits

!  get tries to be fancy:

!  Actually this is identical to attempt 1! It only looks
different but in fact is doing exactly the same thing

36

// Returns value if found, else null
public Object get(Object goal) {
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) return left==null? null: left.get(goal);
 return right==null? null: right.get(goal);
 }
}

7

Attempt #3

!  Risk: “get” (read-only) threads sometimes look at nodes without
locks, but “put” always updates those same nodes.

!  According to JDK rules this is unsafe

37

// Returns value if found, else null
public Object get(Object goal) {
 boolean checkLeft = false, checkRight = false;
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) {
 if (left==null) return null; else checkLeft = true;
 } else {
 if(right==null) return null; else checkRight = true;
 }
 }
 if (checkLeft) return left.get(goal);
 if (checkRight) return right.get(goal);

 /* Never executed but keeps Java happy */ return null;
}

relinquishes lock on this – next
lines are “unprotected”

Attempt #4

!  This version is safe: only accesses the shared variables left and
right while holding locks

!  In fact it should work (I think)

38

// Returns value if found, else null
public Object get(Object goal) {
 BST checkLeft = null, checkRight = null;
 synchronized(this) {
 if(name.equals(goal)) return value;
 if(name.compareTo(goal) < 0) {
 if (left==null) return null; else checkLeft = left;
 } else {
 if(right==null) return null; else checkRight = right;
 }
 }
 if (checkLeft != null) return checkleft.get(goal);
 if (checkRight != null) return checkright.get(goal);

 /* Never executed but keeps Java happy */ return null;
}

Attempt #3 illustrates risks

!  The hardware itself actually needs us to use locking
and attempt 3, although it looks right in Java, could
actually malfunction in various ways
!  Issue: put updates several fields:

" parent.left (or parent.right) for its parent node
"  this.left and this.right and this.name and this.value

! When locking is used correctly, multicore hardware will
correctly implement the updates

! But if you look at values without locking, as we did in
Attempt #3, hardware can behave oddly!

39

More tricky things to know about

!  With priorities Java can be very annoying
! ALWAYS runs higher priority threads before lower

priority threads if scheduler must pick
! The lower priority ones might never run at all

!  Consequence: risk of a “priority inversion”
! High priority thread t1 is waiting for a lock, t2 has it
! Thread t2 is runnable, but never gets scheduled

because t3 is higher priority and “busy”

40

Summary
41

! Use of multiple processes and multiple threads
within each process can exploit concurrency
" Which may be real (multicore) or �virtual� (an illusion)

! But when using threads, beware!
" Must lock (synchronize) any shared memory to avoid non-

determinism and race conditions
" Yet synchronization also creates risk of deadlocks
" Even with proper locking concurrent programs can have

other problems such as �livelock�
! Serious treatment of concurrency is a complex topic

(covered in more detail in cs3410 and cs4410)
! Nice tutorial at

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

