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Several computers can simultaneously access a shared server



The server can itself be a distributed system with
different data and programs on different nodes



Heap memory, files, and Heap memory, files, and
other shared resources other shared resources

[ Registers ] [ Registers ] [ Registers } [ Registers ]
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Single-threaded Multi-threaded

Each program can have several threads of execution



Thread 0

Thread 1

Thread 2

Thread 3

Instruction
Queue

Execution Pipeline

N[
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Several threads can be run on a single processor pipeline.
Each thread is run for a short time and then suspended,
giving the effect that they are running simultaneously



Instruction

Queue
Thread 0 4)[\
Execution Pipeline
Thread 1 — —> ]
Thread 2 —> —>

If the processor has multiple cores (modern CPUs often have
2,4, 8 or more cores), the threads may be assigned to
different cores (or more generally, to different “hardware
threads”) and actually run simultaneously



Threads in Java

* Threads are instances of class Thread

— Can create many, but they consume space & time

* The Java Virtual Machine created the initial Thread
that executes your method main

* Threads have a priority
— Higher priority Threads are executed preferentially

— A newly created Thread has initial priority equal to the
Thread that created it (but can change)



A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

PrimeRun (long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PrimeRun@...

toString() -

run() ...

PrimeRun p=
new PrimeRun (143, 195);
new Thread(p) .start() ;

Method start() will call p’s
method run() in the new
thread of execution




A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

PrimeRun (long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PrimeRun@...

toString() -

run() ...

PrimeRun p=
new PrimeRun (143, 195);

p.run() ;

No new thread!!!
run() runs in same thread
as its caller.




Another way of creating a Thread

class PrimeThread
extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PT@...
toString()

interrupt()
isAlive()
getState() ...

run() ... -

PrimeThread p=

new PrimeThread (143, 195);
p.start() ;

Class Thread has methods
to allow more control
over threads




Class Thread has methods to handle threads

run() -

, PT@...
You can interrupt a

thread, maintain a group ) ing()

of threads, set/change its in.terrupt() -

priority, sleep it for a isAlive()
while, etc. getState() ...

run() ... -

PrimeThread extends Thread, which implements Runnable









Race Condition

e Two or more simultaneous threads of
execution (concurrency)

* Outcome depends on the exact order in
which they are executed

* ... which cannot be predicted in advance
— Betting on races does not guarantee winnings

— Two chefs can cook great dishes one after the

other, but not if they’re trying to simultaneously
use the same stove



Race conditions yield unexpected results

Suppose x is initially O

Thread tl Thread t2

x=x + [; x=x+ I

... after finishing, x = |, not 2! Why?
time

Read x Increment Write x
Thread tl = 0) = 1) = 1)

Th d 2 Read x Increment Write x




Synchronization

* Writing correct concurrent programs is very hard
— ldeally, two threads would never access the same data
— This is frequently unrealistic

* We need some form of synchronization

— E.g. ensure a thread completes its read-modify-write
sequence on a piece of data before another thread is
allowed to touch it

— E.g. ensure a thread accesses a resource only after another
thread has finished accessing it

* There are many methods.We will only look at Java’s
synchronized keyword.



Fixing the x=x + | bug

class Counter { class CounterThread
int value = 0; extends Thread {

public synchronized wvoid inc() {
value= value + 1;

}

static Counter x=
new Counter () ;

public void run() {

xX.inc () ;
Only one thread can execute this method on }

a given counter at a time }

(=0) =1 =1

Read x Increment @ Write x
Thread t2 =) =2) =2)

Thread t| [ Read x I Increment | Write x}




The synchronized block

Stack<String> s= new Stack<String>() ;

{ synchronized(s) {
This is a block of code This is a synchronized
} block of code
}

Only one thread can be executing a block B synchronized
on s at any given time. All other threads trying to execute
a block synchronized on s (need not be the same as B)
must wait until the first thread finishes executing B.

The synchronized block is a primary tool for eliminating
shared data problems. (There are others)




Accessing a stack in a threadsafe way

private Stack<String> s= new Stack<String>();

public void doSomething () {

String str;

synchronized (s) ({
if (s.isEmpty()) return; . Synchronized
str= s.pop() ; block

}

// code to do something with str

}

* Put critical operations in a synchronized block
* The Stack object acts as a lock

* Only one thread can own the lock at a time

* Make synchronized blocks as small as possible



Locking on this, and synchronized methods

You can lock on any object, including this.

public void doSemething () { Note: the whole body
synchronized (this) ({ - )
// body is synchronized on
} this.There’s a
} shorthand for this in
is equivalent to Java
public synchronized void doSomething () {
// body
}
A threadsafe Stack<T> class will have Note: the lock is this

ublic synchronized T po 1 o« stack. Two threads can
P 4 PoP() { } access two different

public synchronized void push(...) { ... }etc SimUltaneausly.




Synchronized collections

* Study class Collections and the following
methods before working on A8:

synchronizedCollection
synchronizedSet
synchronizedSortedSet

synchronizedList

synchronizedMap

synchronizedSortedMap



