A

LT R ‘
3
2) S
gy | C> 2110, 5pring 20115

Be
10:34 AM
m Tracker

@ Showlmage
.B MediiaPlayer

% Meclia
@r Pulse

genki source

Media
Video Settings Audio Mixer
w Vicdeo Input

Eﬁ Video Output

Master Gain
» 3dsound Audlio Settings 44.1kHz 16hit
@ NetPositive g Audlio Input [Mute
@ Auclio Output
= Gain
uclio Mixer
& GIELDLL 12 cB

R%

World O' Networking

Media Player
v 5 ‘

« 5 =
Projects J a JkE

NetPositive

File Edit Go

View

Bookmarks

System Beep

44.1kHz float

Benoit's Mix

Edit

File Display Tracks Misc

[T Mute

= IRRERRRRRRRAR
= INRRRRREERNRD TORTR0E

Gain
18 dB

sl 8

-60 B

Location: ‘netpositi\rezstartup.html

netpos

Welcome to NetPositive
File

Be Home Page

Everything you ever wanted to know about Be. (E
specific information can be found at Be Europe.)
Welcome to the BeOS!

Details regarding your new rocket engine -- the B
Be Documentation

Complete documentation for the BeOS, including
BeOS U ser's Guide, Be Book programmer's refer
BeWare

Re's an-line ReOS software catalng.

& ONE

gitems.

World O' Networking

% %

Accounting

Window

%

Beclepot

%

¥ %

Be Design Mygroup

Russclomain Testgroup Workgroup

AppleTalk Network

A single computer can

simultaneously

00:00:00 00:

—

arabic

Media Player
File

View Settings

00:02:31.01
7
3

a1
CPU Monitor |

Pentium Il
233 MHz

| 1 I

run several programs

Several computers can simultaneously access a shared server

The server can itself be a distributed system with
different data and programs on different nodes

Heap memory, files, and Heap memory, files, and
other shared resources other shared resources

[Registers] [Registers] [Registers } [Registers]

o

Single-threaded Multi-threaded

Each program can have several threads of execution

Thread 0

Thread 1

Thread 2

Thread 3

Instruction
Queue

Execution Pipeline

N[

il

Several threads can be run on a single processor pipeline.
Each thread is run for a short time and then suspended,
giving the effect that they are running simultaneously

Instruction

Queue
Thread 0 4)[\
Execution Pipeline
Thread 1 — —>]
Thread 2 —> —>

If the processor has multiple cores (modern CPUs often have
2,4, 8 or more cores), the threads may be assigned to
different cores (or more generally, to different “hardware
threads”) and actually run simultaneously

Threads in Java

* Threads are instances of class Thread

— Can create many, but they consume space & time

* The Java Virtual Machine created the initial Thread
that executes your method main

* Threads have a priority
— Higher priority Threads are executed preferentially

— A newly created Thread has initial priority equal to the
Thread that created it (but can change)

A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

PrimeRun (long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PrimeRun@...

toString() -

run() ...

PrimeRun p=
new PrimeRun (143, 195);
new Thread(p) .start() ;

Method start() will call p’s
method run() in the new
thread of execution

A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

PrimeRun (long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PrimeRun@...

toString() -

run() ...

PrimeRun p=
new PrimeRun (143, 195);

p.run() ;

No new thread!!!
run() runs in same thread
as its caller.

Another way of creating a Thread

class PrimeThread
extends Thread {
long a, b;

PrimeThread(long a, long b) {
this.a= a; this.b= b;
}

public void run() {

// compute primes
// in a..b

}

run() -

PT@...
toString()

interrupt()
isAlive()
getState() ...

run() ... -

PrimeThread p=

new PrimeThread (143, 195);
p.start() ;

Class Thread has methods
to allow more control
over threads

Class Thread has methods to handle threads

run() -

, PT@...
You can interrupt a

thread, maintain a group) ing()

of threads, set/change its in.terrupt() -

priority, sleep it for a isAlive()
while, etc. getState() ...

run() ... -

PrimeThread extends Thread, which implements Runnable

Race Condition

e Two or more simultaneous threads of
execution (concurrency)

* Outcome depends on the exact order in
which they are executed

* ... which cannot be predicted in advance
— Betting on races does not guarantee winnings

— Two chefs can cook great dishes one after the

other, but not if they’re trying to simultaneously
use the same stove

Race conditions yield unexpected results

Suppose x is initially O

Thread tl Thread t2

x=x + [; x=x+ I

... after finishing, x = |, not 2! Why?
time

Read x Increment Write x
Thread tl = 0) = 1) = 1)

Th d 2 Read x Increment Write x

Synchronization

* Writing correct concurrent programs is very hard
— ldeally, two threads would never access the same data
— This is frequently unrealistic

* We need some form of synchronization

— E.g. ensure a thread completes its read-modify-write
sequence on a piece of data before another thread is
allowed to touch it

— E.g. ensure a thread accesses a resource only after another
thread has finished accessing it

* There are many methods.We will only look at Java’s
synchronized keyword.

Fixing the x=x + | bug

class Counter { class CounterThread
int value = 0; extends Thread {

public synchronized wvoid inc() {
value= value + 1;

}

static Counter x=
new Counter () ;

public void run() {

xX.inc () ;
Only one thread can execute this method on }

a given counter at a time }

(=0) =1 =1

Read x Increment @ Write x
Thread t2 =) =2) =2)

Thread t| [Read x I Increment | Write x}

The synchronized block

Stack<String> s= new Stack<String>() ;

{ synchronized(s) {
This is a block of code This is a synchronized
} block of code
}

Only one thread can be executing a block B synchronized
on s at any given time. All other threads trying to execute
a block synchronized on s (need not be the same as B)
must wait until the first thread finishes executing B.

The synchronized block is a primary tool for eliminating
shared data problems. (There are others)

Accessing a stack in a threadsafe way

private Stack<String> s= new Stack<String>();

public void doSomething () {

String str;

synchronized (s) ({
if (s.isEmpty()) return; . Synchronized
str= s.pop() ; block

}

// code to do something with str

}

* Put critical operations in a synchronized block
* The Stack object acts as a lock

* Only one thread can own the lock at a time

* Make synchronized blocks as small as possible

Locking on this, and synchronized methods

You can lock on any object, including this.

public void doSemething () { Note: the whole body
synchronized (this) ({ -)
// body is synchronized on
} this.There’s a
} shorthand for this in
is equivalent to Java
public synchronized void doSomething () {
// body
}
A threadsafe Stack<T> class will have Note: the lock is this

ublic synchronized T po 1 o« stack. Two threads can
P 4 PoP() { } access two different

public synchronized void push(...) { ... }etc SimUltaneausly.

Synchronized collections

* Study class Collections and the following
methods before working on A8:

synchronizedCollection
synchronizedSet
synchronizedSortedSet

synchronizedList

synchronizedMap

synchronizedSortedMap

