uve]é&%
= 1

B < Ly .

4/14/15

Welcome to NetPositive

A single computer can simultaneously run several programs

Several computers can simultaneously access a shared server

The server can itself be a distributed system with
different data and programs on different nodes

Heap memory, files, and
other shared resources

Heap memory, files, and
other shared resources

[Registers J [Registers] [Registers J

Single-threaded

Multi-threaded

Each program can have several threads of execution

Instruction
Queue

Thread 0

Execution Pipeline

Thread 1
Thread 2

Thread 3

Several threads can be run on a single processor pipeline.
Each thread is run for a short time and then suspended,
giving the effect that they are running simultaneously

Instruction
Queue

Thread 0
Execution Pipeline

Thread 1
Thread 2

Thread 3

If the processor has multiple cores (modern CPUs often have
2,4, 8 or more cores), the threads may be assigned to
different cores (or more generally, to different “hardware
threads”) and actually run simultaneously

4/14/15

Threads in Java

* Threads are instances of class Thread
— Can create many, but they consume space & time

* The JavaVirtual Machine created the initial Thread
that executes your method main

¢ Threads have a priority
— Higher priority Threads are executed preferentially

— A newly created Thread has initial priority equal to the
Thread that created it (but can change)

A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

) RN
PrimeRun(long a, long b) {

this.a= a; this.b= b; PrimeRun@...

! toString() -
public void run() {
// compute primes __

// in a..b
v run() ...
}

Method start() will call p’s
method run() in the new
thread of execution

PrimeRun p=
new PrimeRun (143, 195);
new Thread(p) .start();

A Java Thread runs a Runnable object

class PrimeRun
implements Runnable {
long a, b;

run RN
PrimeRun(long a, long b) {

this.a= a; this.b= b; PrimeRun@...

} toString() -
public void run() {
e - [imerun]

// in a..b
y run() ...
}

m
PrimeRun p= No new th'read,..

new PrimeRun (143, 195); run() runs in same thread
p.xun() ; as its caller.

Another way of creating a Thread

run() -

class PrimeThread
extends Thread {

long a, b;
PT@...
PrimeThread(long a, long b) { .
this.a= a; this.b= b; toString() -

}

public void run() { interrupt() -

// compute primes isAlive()
// in a..b getState() ...

run() ... -

}
}

Class Thread has methods
to allow more control
over threads

PrimeThread p=
new PrimeThread (143, 195);
p.start();

Class Thread has methods to handle threads

run() -

Y int " PT@...
'ou can interrupt a
i toStri
thread, maintain a group ° ring() -
of threads, set/change its i)
priority, sleep it for a isAlive()
while, etc. getState() ...

run() ... -

PrimeThread extends Thread, which implements Runnable

Race Condition

* Two or more simultaneous threads of
execution (concurrency)

* Outcome depends on the exact order in
which they are executed

* ... which cannot be predicted in advance

— Betting on races does not guarantee winnings

— Two chefs can cook great dishes one after the

other, but not if they’re trying to simultaneously
use the same stove

4/14/15

Race conditions yield unexpected results
Suppose x is initially 0

Thread tl Thread t2

x=x+1; ‘ ‘x=x+|;

... after finishing,x = |, not 2! Why?

time

Read x Increment Write x
Thread tl [=0 } [=1) } [=1 }

(Read x: | (
Thread t2 o)

Increment

=1

=1

\ Write x |

Synchronization

* Writing correct concurrent programs is very hard
— ldeally, two threads would never access the same data
— This is frequently unrealistic

* We need some form of synchronization

— E.g. ensure a thread completes its read-modify-write

sequence on a piece of data before another thread is
allowed to touch it

— E.g. ensure a thread accesses a resource only after another
thread has finished accessing it

* There are many methods.We will only look at Java’s
synchronized keyword.

Fixing the x=x + | bug

class Counter {

class CounterThread
int value = 0;

extends Thread {
public synchronized void inc() { static Counter x=
value= value + 1;
g new Counter();

}

public void run() {

\

x.inc();
Only one thread can execute this method on }
a given counter at a time }
time
Wri
Thread tl Read x | Increment rite X

(=0) =1 =1

(Read x‘ ' Increment‘ ‘ Werite x)
Thread t2 ‘ P =2) it

The synchronized block

Stack<String> s= new Stack<String>();

synchronized(s) {
This is a block of code This is a synchronized
} block of code

}

Only one thread can be executing a block B synchronized
on s at any given time. All other threads trying to execute
a block synchronized on s (need not be the same as B)
must wait until the first thread finishes executing B.

The synchronized block is a primary tool for eliminating
shared data problems. (There are others)

4/14/15

Accessing a stack in a threadsafe way

private Stack<String> s= new Stack<String>();

public void doSomething() {

String str;

synchronized (s) {
if (s.isEmpty()) return; Synchronized
str= s.pop(); block

}

// code to do something with str

}

* Put critical operations in a synchronized block
* The Stack object acts as a Jock

* Only one thread can own the lock at a time

* Make synchronized blocks as small as possible

Locking on this, and synchronized methods

You can lock on any object, including this.

public void doSomething() { .
synchronized (this) { —NOFe' the who!e bOdy
// body is synchronized on
} this.There’s a
} shorthand for this in
is equivalent to Java

public synchronized void doSomething() {
// body

}

A threadsafe Stack<T> class will have Note: the lock is this
public synchronized T pop() { ... } < stack Two threads can

. . . access two different
public synchronized void push(...) { ... }etc (C i C Sty

Synchronized collections

* Study class Collections and the following
methods before working on A8:

synchronizedCollection
synchronizedSet
synchronizedSortedSet
synchronizedList
synchronizedMap
synchronizedSortedMap

