
4/14/15%

1%

Threads and

Concurrency

CS 2110, Spring 2015 A single computer can simultaneously run several programs

Several computers can simultaneously access a shared server The server can itself be a distributed system with
different data and programs on different nodes

Each program can have several threads of execution

Heap memory, files, and
other shared resources

Registers

Stack

Registers

Stack

Registers

Stack

Heap memory, files, and
other shared resources

Registers

Stack

Single-threaded Multi-threaded

Several threads can be run on a single processor pipeline.
Each thread is run for a short time and then suspended,

giving the effect that they are running simultaneously

4/14/15%

2%

If the processor has multiple cores (modern CPUs often have
2, 4, 8 or more cores), the threads may be assigned to

different cores (or more generally, to different “hardware
threads”) and actually run simultaneously

Threads in Java

•  Threads are instances of class Thread

– Can create many, but they consume space & time

•  The Java Virtual Machine created the initial Thread
that executes your method main

•  Threads have a priority

– Higher priority Threads are executed preferentially

– A newly created Thread has initial priority equal to the
Thread that created it (but can change)

class PrimeRun
 implements Runnable {
 long a, b;

 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }

 public void run() {
 // compute primes
 // in a..b
 ...
 }
}

PrimeRun p=
 new PrimeRun(143, 195);
new Thread(p).start();

PrimeRun@...

toString()
…

Object

run() …

PrimeRun

run() Runnable

Method start() will call p’s
method run() in the new
thread of execution!

A Java Thread runs a Runnable object

PrimeRun p=
 new PrimeRun(143, 195);
p.run();

A Java Thread runs a Runnable object

PrimeRun@...

toString()
…

Object

run() …

PrimeRun

run() Runnable

No new thread!!!!
run() runs in same thread
as its caller.!

class PrimeRun
 implements Runnable {
 long a, b;

 PrimeRun(long a, long b) {
 this.a= a; this.b= b;
 }

 public void run() {
 // compute primes
 // in a..b
 ...
 }
}

class PrimeThread
 extends Thread {
 long a, b;

 PrimeThread(long a, long b) {
 this.a= a; this.b= b;
 }

 public void run() {
 // compute primes
 // in a..b
 ...
 }
}

PrimeThread p=
 new PrimeThread(143, 195);
p.start();

Another way of creating a Thread
run() Runnable

interrupt()
isAlive()
getState() …

PT@...

Object

run() … PT

Thread

toString()
…

Class Thread has methods
to allow more control
over threads!

Class Thread has methods to handle threads

run() Runnable

interrupt()
isAlive()
getState() …

PT@...

Object

run() … PT

Thread

toString()
…

You can interrupt a
thread, maintain a group
of threads, set/change its
priority, sleep it for a
while, etc.!

PrimeThread extends Thread, which implements Runnable!

4/14/15%

3%

Race Condition

•  Two or more simultaneous threads of
execution (concurrency)

•  Outcome depends on the exact order in
which they are executed

•  … which cannot be predicted in advance
– Betting on races does not guarantee winnings
– Two chefs can cook great dishes one after the

other, but not if they’re trying to simultaneously
use the same stove

Race conditions yield unexpected results

... after finishing, x = 1, not 2! Why?!

Suppose x is initially 0!

x= x + 1;!

Thread t1!

x= x + 1;!

Thread t2!

Thread t1!

Thread t2!

time

Read x
(= 0)

Read x
(= 0)

Increment
(= 1)

Increment
(= 1)

Write x
(= 1)

Write x
(= 1)

Synchronization

•  Writing correct concurrent programs is very hard
–  Ideally, two threads would never access the same data
–  This is frequently unrealistic

•  We need some form of synchronization
–  E.g. ensure a thread completes its read-modify-write

sequence on a piece of data before another thread is
allowed to touch it

–  E.g. ensure a thread accesses a resource only after another
thread has finished accessing it

•  There are many methods. We will only look at Java’s
synchronized keyword.

Fixing the x= x + 1 bug
class CounterThread
 extends Thread {

 static Counter x=
 new Counter();

 public void run() {
 x.inc();
 }
}

class Counter {
 int value = 0;

 public synchronized void inc() {
 value= value + 1;
 }
}

Only one thread can execute this method on
a given counter at a time

Thread t1!

Thread t2!

time

Read x
(= 0)

Read x
(= 1)

Increment
(= 1)

Increment
(= 2)

Write x
(= 1)

Write x
(= 2)

4/14/15%

4%

The synchronized block
Stack<String> s= new Stack<String>();

synchronized(s) {!
 This is a synchronized"
 block of code!
}!

Only one thread can be executing a block B synchronized
on s at any given time. All other threads trying to execute
a block synchronized on s (need not be the same as B)
must wait until the first thread finishes executing B.!

The synchronized block is a primary tool for eliminating
shared data problems. (There are others)!

{!
 This is a block of code!
} !
!

Accessing a stack in a threadsafe way

• Put critical operations in a synchronized block
• The Stack object acts as a lock
• Only one thread can own the lock at a time
• Make synchronized blocks as small as possible

private Stack<String> s= new Stack<String>();

public void doSomething() {
 String str;
 synchronized (s) {
 if (s.isEmpty()) return;
 str= s.pop();
 }

 // code to do something with str
}

Synchronized
block

Locking on this, and synchronized methods

public void doSomething(){
 synchronized (this) {
 // body
 }
}

You can lock on any object, including this.!

public synchronized void doSomething(){
 // body
}

is equivalent to

Note: the whole body
is synchronized on

this. There’s a
shorthand for this in

Java!

A threadsafe Stack<T> class will have
 public synchronized T pop() { … }
 public synchronized void push(…) { … } etc

Note: the lock is this
stack. Two threads can
access two different
stacks simultaneously.

Synchronized collections

•  Study class Collections and the following
methods before working on A8:

synchronizedCollection
synchronizedSet
synchronizedSortedSet
synchronizedList
synchronizedMap
synchronizedSortedMap

