
SHORTEST PATHS
Lecture 19
CS2110 – Spring 2015

1

Readings? Chapter 28

2

Do not write 2n = O(n) !!!!!!

Please tell your AEW facilitator NOT to write:
(1) 2n = O(n)

Instead, write: 2n is O(n)

Formula (1) is a misuse of mathematical
notation, and it can can lead to misconceptions
and errors, as shown on the next slide.

3

Instead of “Jack is tall”
do you write “Jack = tall”?
Of course not!

Do not write 2n = O(n) !!!!!!

We know that 2n is O(n) and 3n is O(n)
Write these as 2n = O(n) and 3n = O(n)

Then, we have:

 2n

 = <above>

 O(n)
 = <above>

 3n

4

So, using symmetry and
transitivity of =, we have
proved that

 2n = 3n !!!!

Shortest Paths in Graphs

Problem of finding shortest (min-cost) path in a graph occurs often
¤  Find shortest route between Ithaca and West Lafayette, IN
¤  Result depends on notion of cost

n Least mileage… or least time… or cheapest
n Perhaps, expends the least power in the butterfly while

flying fastest
n Many “costs” can be represented as edge weights

Every time you use googlemaps to find directions you are using
a shortest-path algorithm

5

From Sid’s to David’s
6

Use googlemaps to find
a route from Sid’s to
David’s house.

Gives three routes,
depending on what is to
be minimized.
Miles?
Driving time?
Use of big highways?
Scenic routes?

Shortest path?
7

Each intersection is
a node of the graph,
and each road
between two
intersections has a
weight

distance?
time to traverse?
…

Shortest path?
8

Fan out from the start
node (kind of breadth-
first search)

Settled set: Those
whose shortest
distance is known.

Frontier set: Those
seen at least once but
shortest distance not
yet known

Shortest path?
9

Fan out from the start
node (kind of breadth-
first search). Start:

Settled set:

Frontier set:

Choose the one in
Frontier set with
shortest distance
from start

Shortest path?
10

Fan out from start
node. Recording
shortest distance from
start seen so far

Settled set:

Frontier set: 2

1

1 2

Now choose one in
Frontier set with
shortest distance
from start

Shortest path?
11

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set:

2

1

2

Now choose the one
in Frontier set with
shortest distance
from start

1
4

3

43

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set:

Shortest path?
12

1

Now choose the one
in Frontier set with
shortest distance

1

3

43

2

2 5
5

6
6

7

7

4

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set:

Shortest path?
13

5

1

5

Now choose the one
in Frontier set with
shortest distance

1

3

3

2

2

6

6

7

7

4

4

8

8

9

9 AA

Fan out from start,
recording shortest
distance seen so far

Settled set:

Frontier set:

Shortest path?
14

5

1

5

1

3

3

2

2

7

7

4

4

8

8

9

9 AA

6

6

B

B

15

Dijkstra’s shortest-path algorithm
15

Edsger Dijkstra, in an interview in 2010 (CACM):
 … the algorithm for the shortest path, which I designed in about
20 minutes. One morning I was shopping in Amsterdam with my
young fiance, and tired, we sat down on the cafe terrace to drink a
cup of coffee, and I was just thinking about whether I could do
this, and I then designed the algorithm for the shortest path. As I
said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische
Mathematik 1, 269–271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his
contributions. As a historical record, this is a gold mine.

16

Dijkstra’s shortest-path algorithm
16

Dijsktra describes the algorithm in English:
¨  When he designed it in 1956 (he was 26 years old), most people
were programming in assembly language!
¨  Only one high-level language: Fortran, developed by John
Backus at IBM and not quite finished.
No theory of order-of-execution time —topic yet to be developed.
In paper, Dijkstra says, “my solution is preferred to another one
… “the amount of work to be done seems considerably less.”

Dijkstra, E.W. A note on two problems in Connexion with graphs.
Numerische Mathematik 1, 269–271 (1959).

17

1968 NATO Conference on
Software Engineering, Garmisch, Germany

17

Dijkstra

Gries

Term “software engineering” coined for this conference

18
1968 NATO Conference on Software Engineering

•  In Garmisch, Germany
•  Academicians and industry people attended

•  For first time, people admitted they did not know what they
were doing when developing/testing software. Concepts,
methodologies, tools were inadequate, missing

•  The term software engineering was born at this conference.
•  The NATO Software Engineering Conferences:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
Get a good sense of the times by reading these reports!

19

1968 NATO Conference on
Software Engineering, Garmisch, Germany

19

20

2
0

1968/69 NATO Conferences on Software Engineering

Editors of the proceedings

Edsger Dijkstra Niklaus Wirth Tony Hoare David Gries

 Beards
The reason why some people grow
 aggressive tufts of facial hair
Is that they do not like to show
 the chin that isn't there.
 a grook by Piet Hein

4

0

1

2 3

21

Dijkstra’s shortest path algorithm

The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in
L[w] the length of the shortest path from v to w.

weight(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.

22

Dijkstra’s shortest path algorithm

 Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all
variables— just before each node i is given its final value L[i].

This relation among the variables is an invariant, because
it is always true.

Because each node i (except the first) is given
its final value L[i] during an iteration of a loop,
the invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

23

1. For a Settled node s, L[s] is length of shortest v → s path.
2. All edges leaving S go to F.
3. For a Frontier node f, L[f] is length of shortest v → f path
 using only red nodes (except for f)
4. For a Far-off node b, L[b] = ∞

Frontier
F

Settled
S

 Far off

f

4
2 4

1
3

34

0

1

2 3

f

(edges leaving the black set and
edges from the blue to the red set
are not shown)

5. L[v] = 0, L[w] > 0 for w ≠ v

The loop invariant

v

24

1. For a Settled node s, L[s] is length of shortest v → r path.
2. All edges leaving S go to F.
3. For a Frontier node f, L[f] is length of shortest v → f path
 using only Settled nodes (except for f).
4. For a Far-off node b, L[b] = ∞.

Theorem. For a node f in F with minimum L value (over nodes in
F), L[f] is the length of the shortest path from v to f.

Frontier
F

Settled
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

5. L[v] = 0, L[w] > 0 for w ≠ v
.

25

1. For s, L[s] is length of
 shortest v→ s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).
4. For b in Far off, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞; L[v]= 0;
F= { v }; S= { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm

Loopy question 1:
How does the loop start? What
is done to truthify the invariant?

26

When does loop stop? When is
array L completely calculated?

while {

}

1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).
4. For b in Far off, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞; L[v]= 0;
F= { v }; S= { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}

The algorithm

Loopy question 2:

27

How is progress toward
termination accomplished?

while {

}

f= node in F with min L value;

Remove f from F, add it to S;1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).
4. For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞; L[v]= 0;
F= { v }; S= { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f
F ≠ {}

The algorithm

Loopy question 3:

f

28

How is the invariant
maintained?

while {

}

f= node in F with min L value;

Remove f from F, add it to S;1. For s, L[s] is length of
 shortest v → s path.
2. Edges leaving S go to F.

 S F Far off

3. For f, L[f] is length of
 shortest v → f path using
 red nodes (except for f).
4. For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞; L[v]= 0;
F= { v }; S= { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠ {}

for each edge (f,w) {

}

if (L[w] is ∞) add w to F;

if (L[f] + weight (f,w) < L[w])
 L[w]= L[f] + weight(f,w);

The algorithm

Loopy question 4:

f
w

w

Algorithm is finished

w

29

For all w, L[w]= ∞; L[v]= 0;
F= { v }; S= { };
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F, add it to S;
 for each edge (f,w) {
 if (L[w] is ∞) add w to F;
 if (L[f] + weight (f,w) < L[w])
 L[w]= L[f] + weight(f,w);
 }
}

 Final algorithm 1. No need to implement S.
2. Implement F as a min-heap.
3. Instead of ∞, use

 Integer.MAX_VALUE.

if (L[w] == Integer.MAX_VAL) {
 L[w]= L[f] + weight(f,w);
 add w to F;
} else L[w]= Math.min(L[w],
 L[f] + weight(f,w));

S F

30

For all w, L[w]= ∞; L[v]= 0;
F= { v };
while F ≠ {} {
 f= node in F with min L value;
 Remove f from F;
 for each edge (f,w) {
 if (L[w] == Integer.MAX_VAL) {
 L[w]= L[f] + weight(f,w);
 add w to F;
 }
 else L[w]=
 Math.min(L[w], L[f] + weight(f,w));
 }
}

Execution time
S F

n nodes, reachable from v. e ≥ n-1 edges
 n–1 ≤ e ≤ n*n

O(n)
O(n log n)

O(e)
 O(n-1)
 O(n log n)

O((e-(n-1)) log n)

O(n)

O(n + e)

outer loop:
n iterations.
Condition
evaluated
n+1 times.
inner loop:
e iterations.
Condition
evaluated
n + e times.

 Complete graph: O(n2 log n). Sparse graph: O(n log n)

O(n)
O(1)

