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Readings?  Chapter 28 
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Do not write 2n = O(n)    !!!!!! 

Please tell your AEW facilitator NOT to write: 
(1)  2n = O(n) 

Instead, write:   2n is O(n) 

 

Formula (1) is a misuse of mathematical 
notation, and it can can lead to misconceptions 
and errors, as shown on the next slide. 
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Instead of “Jack is tall” 
do you write “Jack = tall”? 
Of course not! 



Do not write 2n = O(n)    !!!!!! 

We know that    2n is O(n)   and    3n is O(n) 
Write these as   2n = O(n)   and    3n = O(n) 

Then, we have: 

       2n 

   =    <above> 

       O(n) 
   =    <above> 

       3n 
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So, using symmetry and 
transitivity of =, we have 
proved that 
 
    2n = 3n    !!!! 
 



Shortest Paths in Graphs 

Problem of finding shortest (min-cost) path in a graph occurs often 
¤  Find shortest route between Ithaca and West Lafayette, IN 
¤  Result depends on notion of cost 

n Least mileage… or least time… or cheapest 
n Perhaps, expends the least power in the butterfly while 

flying fastest 
n Many “costs” can be represented as edge weights 

Every time you use googlemaps to find directions you are using 
a shortest-path algorithm 
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From Sid’s to David’s 
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Use googlemaps to find 
a route from Sid’s to 
David’s house. 
 
Gives three routes, 
depending on what is to 
be minimized. 
Miles? 
Driving time? 
Use of big highways? 
Scenic routes? 



Shortest path? 
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Each intersection is 
a node of the graph, 
and each road 
between two 
intersections has a 
weight 
 
distance? 
time to traverse? 
… 



Shortest path? 
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Fan out from the start 
node (kind of breadth-
first search) 
 
Settled set: Those 
whose shortest 
distance is known. 
 
Frontier set: Those 
seen at least once but 
shortest distance not 
yet known 



Shortest path? 
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Fan out from the start 
node (kind of breadth-
first search). Start: 
 
Settled set: 
 
Frontier set:  

Choose the one in 
Frontier set with 
shortest distance 
from start 



Shortest path? 
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Fan out from start 
node. Recording 
shortest distance from 
start seen so far 
 
Settled set: 
 
Frontier set:  2

1

1 2

Now choose one in 
Frontier set with 
shortest distance 
from start 



Shortest path? 
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Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  

2

1

2

Now choose the one 
in Frontier set with 
shortest distance 
from start 

1
4

3

43



Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  

Shortest path? 
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1

Now choose the one 
in Frontier set with 
shortest distance 

1

3

43
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Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  

Shortest path? 
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5

1

5

Now choose the one 
in Frontier set with 
shortest distance 

1

3

3

2

2

6

6

7

7

4

4

8

8

9

9 AA



Fan out from start, 
recording shortest 
distance seen so far 
 
Settled set: 
 
Frontier set:  

Shortest path? 
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3
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Dijkstra’s shortest-path algorithm 
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Edsger Dijkstra, in an interview in 2010 (CACM):  
 … the algorithm for the shortest path, which I designed in about 
20 minutes. One morning I was shopping in Amsterdam with my 
young fiance, and tired, we sat down on the cafe terrace to drink a 
cup of coffee, and I was just thinking about whether I could do 
this, and I then designed the algorithm for the shortest path. As I 
said, it was a 20-minute invention. [Took place in 1956] 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische 
Mathematik 1, 269–271 (1959). 
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his 
contributions. As a historical record, this is a gold mine. 
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Dijkstra’s shortest-path algorithm 
16 

Dijsktra describes the algorithm in English: 
¨  When he designed it in 1956 (he was 26 years old), most people 
were programming in assembly language! 
¨  Only one high-level language: Fortran, developed by John 
Backus at IBM and not quite finished. 
No theory of order-of-execution time —topic yet to be developed. 
In paper, Dijkstra says, “my solution is preferred to another one 
… “the amount of work to be done seems considerably less.” 
 
Dijkstra, E.W. A note on two problems in Connexion with graphs. 
Numerische Mathematik 1, 269–271 (1959). 
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1968 NATO Conference on 
Software Engineering, Garmisch, Germany 
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Dijkstra 

Gries 

Term “software engineering” coined for this conference 



18 
1968 NATO Conference on Software Engineering 
 

•  In Garmisch, Germany 
•  Academicians and industry people attended 

•  For first time, people admitted they did not know what they 
were doing when developing/testing software. Concepts, 
methodologies, tools were inadequate, missing 

•  The term software engineering was born at this conference. 
•  The NATO Software Engineering Conferences:  

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html 
Get a good sense of the times by reading these reports! 
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1968 NATO Conference on 
Software Engineering, Garmisch, Germany 
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2
0

1968/69 NATO Conferences on Software Engineering 
 

Editors of the proceedings

Edsger Dijkstra   Niklaus Wirth   Tony Hoare       David Gries  

 Beards 
The reason why some people grow 
     aggressive tufts of facial hair 
Is that they do not like to show 
     the chin that isn't there. 
                    a grook by Piet Hein 
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Dijkstra’s shortest path algorithm 
 
 

The n (> 0) nodes of a graph numbered 0..n-1.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0

v
4

2 4
1

3
3

Each edge has a positive weight.

Some node v be selected as the start node.

Use an array L[0..n-1]: for each node w, store in 
L[w] the length of the shortest path from v to w.

weight(v1, v2) is the weight of the edge from node v1 to v2.

Calculate length of shortest path from v to each node.
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Dijkstra’s shortest path algorithm 
 
 Develop algorithm, not just present it.

Need to show you the state of affairs —the relation among all 
variables— just before each node i  is given its final value L[i].

This relation among the variables is an invariant, because 
it is always true.

Because each node i (except the first) is given 
its final value L[i] during an iteration of a loop, 
the invariant is called a loop invariant.

L[0] = 2
L[1] = 5
L[2] = 6
L[3] = 7
L[4] = 0
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1. For a Settled node s, L[s] is length of shortest v → s path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only red nodes (except for f)
4. For a Far-off node b, L[b] = ∞ 

Frontier 
F

Settled 
S

   Far off

f

4
2 4

1
3

34

0

1

2 3

f

(edges leaving the black set and 
edges from the blue to the red set 
are not shown)

5. L[v] = 0, L[w] > 0 for w ≠ v

The loop invariant 
 
 

v
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1. For a Settled node s, L[s] is length of shortest v → r path.   
2. All edges leaving S go to F.   
3. For a Frontier node f, L[f] is length of shortest v → f path
    using only Settled nodes (except for f).
4. For a Far-off node b, L[b] = ∞.        

Theorem. For a node f in F with minimum L value (over nodes in 
F), L[f] is the length of the shortest path from v to f.

Frontier 
F

Settled 
S

Far off

f

Theorem about the invariant

fvg

g

Case 1: v is in S.
Case 2: v is in F. Note that L[v] is 0; it has minimum L value

L[g] ≥ L[f]

5. L[v] = 0, L[w] > 0 for w ≠ v
.
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1.  For s, L[s] is length of
     shortest v→ s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b in Far off, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v
 

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

v

The algorithm 

Loopy question 1: 
How does the loop start? What 
is done to truthify the invariant?
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When does loop stop? When is 
array L completely calculated?

while                 {
    

}

1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b in Far off, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}

The algorithm 

Loopy question 2: 
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How is progress toward 
termination accomplished?

while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v →  f path using
     red nodes (except for f).
4.  For b, L[b] = ∞
5.  L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

f
F ≠  {}

The algorithm 

Loopy question 3: 

f
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How is the invariant 
maintained?

while                 {
    

}

f= node in F with min L value; 

Remove f from F, add it to S;1.  For s, L[s] is length of
     shortest v → s path.   
2.  Edges leaving S go to F.   

 S                  F          Far off

3.  For f, L[f] is length of
     shortest v → f path using
     red nodes (except for f).
4.  For b, L[b] = ∞
5. L[v] = 0, L[w] > 0 for w ≠ v

For all w, L[w]= ∞;   L[v]= 0;
F=  { v };  S=  { };

Theorem: For a node f in F
with min L value, L[f] is
shortest path length

F ≠  {}

for each edge (f,w) {
   
   

}

if (L[w]  is ∞) add w to F;

if (L[f] + weight (f,w) < L[w])
    L[w]= L[f] + weight(f,w);

The algorithm 

Loopy question 4: 

f
w

w

Algorithm is finished

w
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For all w, L[w]= ∞;  L[v]= 0;
F=  { v };  S=  { };
while F ≠  {}  {
   f= node in F with min L value;
       Remove f from F, add it to S;
   for each edge (f,w) {
     if (L[w]  is ∞) add w to F;
     if (L[f] + weight (f,w) < L[w])
       L[w]= L[f] + weight(f,w);
  }
}

  Final algorithm 1. No need to implement S.
2. Implement F as a min-heap.
3. Instead of ∞, use

  Integer.MAX_VALUE.

if (L[w] == Integer.MAX_VAL) {
    L[w]=  L[f] + weight(f,w);
    add w to F;
} else  L[w]= Math.min(L[w],
                 L[f] + weight(f,w));

S F
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For all w, L[w]= ∞;  L[v]= 0;
F=  { v };
while F  ≠  {} {
   f=  node in F with min L value;
   Remove f from F;
   for each edge (f,w) {
      if (L[w] == Integer.MAX_VAL) {
           L[w]=  L[f] + weight(f,w);
           add w to F;
      }
      else L[w]=  
           Math.min(L[w], L[f] + weight(f,w));
   }
}

Execution time 
S F

n nodes, reachable from v. e ≥ n-1 edges
                             n–1  ≤  e  ≤  n*n

O(n)
O(n log n)

O(e)
   O(n-1)
   O(n log n)

O((e-(n-1)) log n)

O(n)

O(n + e)

outer loop:
n iterations.
Condition 
evaluated
n+1 times.
inner loop:
e iterations.
Condition 
evaluated
n + e times.

 Complete graph: O(n2 log n). Sparse graph: O(n log n)

  
O(n)
O(1)


